Development of microbiological diffusion inhibition test for the determination of antibiotic residues in the milk

Main Article Content

Authors

S. Aktayeva

National center for biotechnology, 010000, Astana, Korgalzhyn road, 13/5
L.N. Gumilyov Eurasian National University, 010008, A, K. Satpayev street, 2

A. Sarsen

National center for biotechnology, 010000, Astana, Korgalzhyn road, 13/5

 

A. Mussakhmetov

National center for biotechnology, 010000, Astana, Korgalzhyn road, 13/5

A. Kiribayeva

National center for biotechnology, 010000, Astana, Korgalzhyn road, 13/5

 

A. Tursunbekova

Saken Seifullin Kazakh Agrotechnical Research University, 010001, Astana, Zhenis avenue, 62

B. Khassenov

National center for biotechnology, 010000, Astana, Korgalzhyn road, 13/5

Abstract

Antimicrobial agents are used in animal husbandry for the prevention and treatment of diseases in farm animals and have become an indispensable aspect of commercial livestock production. Antimicrobial therapy is well-established as a component of comprehensive preventive measures aimed at minimizing diseases in farm animals and has been incorporated into procedures directed at promoting livestock growth and productivity. Bacillus licheniformis strain T7 is susceptible to the antibiotics clidamycin, rifampicin, erythromycin, ciprofloxacin, tobramycin, tetracycline, penicillin, streptomycin, and chloramphenicol, has good sporogenic properties, grows rapidly on nutrient agar at 30-55 °C, pH 5.5–8.0, and can serve as a test culture in a microbial inhibitor test. Bacillus licheniformis T7 spores were obtained by growing the culture in Difco sporulation medium and then inactivating the vegetative cells at 90 °C for 20 minutes. Endospores of Bacillus licheniformis T7 co-polymerized with nutrient agar and germinated at 55 °C for 3–3.5 h, resulting in a pH shift from 5.5 to >6.5, which can be measured with an acid-base indicator. Bromocresol purple was suggested as a pH indicator for use in a microbiological inhibition test, wherein the presence of antibiotics or other compounds impeding the development of a microbiological culture could be determined by a change in the agar's color. A microtube- and plate-based microbiological inhibitor test prototype has been developed.

 

Keywords

Bacillus licheniformis, spores, antibiotics, milk, inhibition

Article Details

References

Khardori N., Stevaux C., Ripley K. Antibiotics: from the beginning to the future: Part 2 // Indian J Pediatr. ‒ 2020. ‒ Vol. 87, № 1. ‒ P. 43-47.

Agathokleous E., Kitao M., Calabrese E. J. Human and veterinary antibiotics induce hormesis in plants: Scientific and regulatory issues and an environmental perspective // Environ Int. ‒ 2018. ‒ Vol. 120. ‒ P. 489-495.

Tasho R. P., Cho J. Y. Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review // Sci Total Environ. ‒ 2016. ‒ Vol. 563-564. ‒ P. 366-76.

Bacanlı M., Başaran N. Importance of antibiotic residues in animal food // Food Chem Toxicol. ‒ 2019. ‒ Vol. 125. ‒ P. 462-466.

Rahman M. S., Hassan M. M., Chowdhury S. Determination of antibiotic residues in milk and assessment of human health risk in Bangladesh // Heliyon. ‒ 2021. ‒ Vol. 7, № 8. ‒ P. e07739.

Wegener H. C. Antibiotics in animal feed and their role in resistance development // Curr Opin Microbiol. ‒ 2003. ‒ Vol. 6, № 5. ‒ P. 439-45.

Wemette M., Greiner Safi A., Wolverton A. K., Beauvais W., Shapiro M., Moroni P., Welcome F. L., Ivanek R. Public perceptions of antibiotic use on dairy farms in the United States // J Dairy Sci. ‒ 2021. ‒ Vol. 104, № 3. ‒ P. 2807-2821.

Kumar N., Vishweswaraiah R., Kumar A., Haldar L., Khan A., Rane S., Malik R. Spore germination based assay for monitoring antibiotic residues in milk at dairy farm // World journal of microbiology & biotechnology. ‒ 2012. ‒ Vol. 28. ‒ P. 2559-66.

Zhou J., Xue X., Li Y., Zhang J., Chen F., Wu L., Chen L., Zhao J. Multiresidue determination of tetracycline antibiotics in propolis by using HPLC-UV detection with ultrasonic-assisted extraction and two-step solid phase extraction // Food Chem. ‒ 2009. ‒ Vol. 115. ‒ P. 1074-1080.

Azzouz A., Jurado-Sánchez B., Souhail B., Ballesteros E. Simultaneous determination of 20 pharmacologically active substances in cow's milk, goat's milk, and human breast milk by gas chromatography-mass spectrometry // J Agric Food Chem. ‒ 2011. ‒ Vol. 59, № 9. ‒ P. 5125-32.

Grzelak E., Irena M., Choma I. Determination of cefacetrile and cefuroxime residues in milk by thin-layer chromatography // Journal of Liquid Chromatography & Related Technologies®. ‒ 2009. ‒ Vol. 32. ‒ P. 2043-2049.

Blasco C., Corcia A., Pico Y. Determination of tetracyclines in multi-specie animal tissues by pressurized liquid extraction and liquid chromatography–tandem mass spectrometry // Food Chem. ‒ 2009. ‒ Vol. 116. ‒ P. 1005-1012.

Raykova M. R., Corrigan D. K., Holdsworth M., Henriquez F. L., Ward A. C. Emerging electrochemical sensors for real-time detection of tetracyclines in milk // Biosensors (Basel). ‒ 2021. ‒ Vol. 11, № 7.

de Faria L. V., Lisboa T. P., Campos N. D. S., Alves G. F., Matos M. A. C., Matos R. C., Munoz R. A. A. Electrochemical methods for the determination of antibiotic residues in milk: A critical review // Anal Chim Acta. ‒ 2021. ‒ Vol. 1173. ‒ P. 338569.

Suhren G., Heeschen W. Detection of inhibitors in milk by microbial tests. A review // Nahrung. ‒ 1996. ‒ Vol. 40, № 1. ‒ P. 1-7.

Aktayeva S., Kiribayeva A., Makasheva D., Astrakhanov M., Tursunbekova A., Baltin K., Khassenov B. Isolation, identification and use of strains of bacteria of the genus Bacillus in a microbiological test for the determination of antibiotics in milk // Eurasian Journal of Applied Biotechnology. ‒ 2022.10.11134/btp.4.2022.6 № 4. ‒ P. 49-57.

Aktayeva S. B. K., Khassenov B. Isolation of Bacillus strains with keratinolitic activity // Eurasian Journal of Applied Biotechnology. ‒ 2020. ‒ Vol. 2. ‒ P. 95-99.

Evelyn, Utami S. P., Chairul. Effect of temperature and soluble solid on Bacillus subtilis and Bacillus licheniformis spore inactivation and quality degradation of pineapple juice // Food Sci Technol Int. ‒ 2022. ‒ Vol. 28, № 4. ‒ P. 285-296.

Furukawa S., Narisawa N., Watanabe T., Kawarai T., Myozen K., Okazaki S., Ogihara H., Yamasaki M. Formation of the spore clumps during heat treatment increases the heat resistance of bacterial spores // Int J Food Microbiol. ‒ 2005. ‒ Vol. 102, № 1. ‒ P. 107-11.

Gladka G. V., Romanovskaya V. A., Tashyreva H. O., Tashyrev O. B. Phylogenetic analysis and autecology of spore-forming bacteria from hypersaline environments // Mikrobiol Z. ‒ 2015. ‒ Vol. 77, № 6. ‒ P. 31-8.

Kim S. Y., Shin S. J., Song C. H., Jo E. K., Kim H. J., Park J. K. Destruction of Bacillus licheniformis spores by microwave irradiation // J Appl Microbiol. ‒ 2009. ‒ Vol. 106, № 3. ‒ P. 877-85.

Borch-Pedersen K., Mellegård H., Reineke K., Boysen P., Sevenich R., Lindbäck T., Aspholm M. Effects of High pressure on Bacillus licheniformis spore germination and inactivation // Appl Environ Microbiol. ‒ 2017. ‒ Vol. 83, № 14.

Ahn J., Balasubramaniam V. M. Screening foods for processing-resistant bacterial spores and characterization of a pressure- and heat-resistant Bacillus licheniformis isolate // J Food Prot. ‒ 2014. ‒ Vol. 77, № 6. ‒ P. 948-54.

Margosch D., Gänzle M. G., Ehrmann M. A., Vogel R. F. Pressure inactivation of Bacillus endospores // Appl Environ Microbiol. ‒ 2004. ‒ Vol. 70, № 12. ‒ P. 7321-8.

Li L., Jin J., Hu H., Deveau I. F., Foley S. L., Chen H. Optimization of sporulation and purification methods for sporicidal efficacy assessment on Bacillus spores // J Ind Microbiol Biotechnol. ‒ 2022. ‒ Vol. 49, № 4.

Sinnelä M. T., Pawluk A. M., Jin Y. H., Kim D., Mah J. H. Effect of calcium and manganese supplementation on heat resistance of spores of Bacillus species associated with food poisoning, spoilage, and fermentation // Front Microbiol. ‒ 2021. ‒ Vol. 12. ‒ P. 744953.

Tao X., Jiang H., Zhu J., Wang X., Wang Z., Niu L., Wu X., Shi W., Shen J. An ultrasensitive chemiluminescent ELISA for determination of chloramphenicol in milk, milk powder, honey, eggs and chicken muscle // Food and Agricultural Immunology. ‒ 2013. ‒ Vol. 25.

Jank L., Martins M. T., Arsand J. B., Motta T. M. C., Feijó T. C., dos Santos Castilhos T., Hoff R. B., Barreto F., Pizzolato T. M. Liquid chromatography–tandem mass spectrometry multiclass method for 46 antibiotics residues in milk and meat: development and validation // Food Analytical Methods. ‒ 2017. ‒ Vol. 10, № 7. ‒ P. 2152-2164.

Steinborn A., Alder L., Michalski B., Zomer P., Bendig P., Martinez S. A., Mol H. G., Class T. J., Pinheiro N. C. Determination of glyphosate levels in breast milk samples from germany by LC-MS/MS and GC-MS/MS // J Agric Food Chem. ‒ 2016. ‒ VOL. 64, № 6. ‒ P. 1414-21.

Tian H., Wang J., Zhang Y., Li S., Jiang J., Tao D., Zheng N. Quantitative multiresidue analysis of antibiotics in milk and milk powder by ultra-performance liquid chromatography coupled to tandem quadrupole mass spectrometry // J Chromatogr B Analyt Technol Biomed Life Sci. ‒ 2016. ‒ Vol. 1033-1034. ‒ P. 172-179.

Wang Y., Li X., Zhang Z., Ding S., Jiang H., Li J., Shen J., Xia X. Simultaneous determination of nitroimidazoles, benzimidazoles, and chloramphenicol components in bovine milk by ultra-high performance liquid chromatography-tandem mass spectrometry // Food Chem. ‒ 2016. ‒ Vol. 192. ‒ P. 280-7.

Moloko i molochnye produkty. Mikrobiologicheskie metody opredelenija nalichija antibiotikov. GOST 31502-2012 (Milk and milk products. Microbiological methods for determining the presence of antibiotics. GOST 31502-2012 - 2012.) ‒ 2012.

Wu Q., Zhu Q., Liu Y., Shabbir M. A. B., Sattar A., Peng D., Tao Y., Chen D., Wang Y., Yuan Z. A microbiological inhibition method for the rapid, broad-spectrum, and high-throughput screening of 34 antibiotic residues in milk // J Dairy Sci. ‒ 2019. ‒ Vol. 102, № 12. ‒ P. 10825-10837.

Molina M. P., Althaus R., Molina A., Fernández N. Antimicrobial agent detection in ewes’ milk by the microbial inhibitor test brilliant black reduction test-BRT AİM® // International Dairy Journal. ‒ 2003. ‒ Vol. 13. ‒ P. 821-826.

Nagel O. G., Beltrán M., Molina M., Althaus R. L. Novel microbiological system for antibiotic detection in ovine milk // Small ruminant research. ‒ 2012. ‒ Vol. 102, № 1. ‒ P. 26-31.

Zhong S.-F., Yang B., Xiong Q., Cai W.-W., Lan Z.-G., Ying G.-G. Hydrolytic transformation mechanism of tetracycline antibiotics: Reaction kinetics, products identification and determination in WWTPs // Ecotoxicology and Environmental Safety. ‒ 2022. ‒ Vol. 229. ‒ P. 113063.

Stubbings W., Leow P., Yong G. C., Goh F., Körber-Irrgang B., Kresken M., Endermann R., Labischinski H. In vitro spectrum of activity of finafloxacin, a novel, pH-activated fluoroquinolone, under standard and acidic conditions // Antimicrob Agents Chemother. ‒ 2011. ‒ Vol. 55, № 9. ‒ P. 4394-7.

Lemaire S., Tulkens P. M., Van Bambeke F. Contrasting effects of acidic pH on the extracellular and intracellular activities of the anti-gram-positive fluoroquinolones moxifloxacin and delafloxacin against Staphylococcus aureus // Antimicrob Agents Chemother. ‒ 2011. ‒ Vol. 55, № 2. ‒ P. 649-58.