Pathogenicity Factors and Antibiotic Resistance of the Bacteroides Fragilis

Main Article Content


S.S. Kozhakhmetova

National Center for Biotechnology, 13/5, Kurgalzhyn road, Nur-Sultan, 010000, Kazakhstan

E.V. Zholdybayeva

National Center for Biotechnology, 13/5, Kurgalzhyn road, Nur-Sultan, 010000, Kazakhstan

K.E. Mukhtarova

National Center for Biotechnology, 13/5, Kurgalzhyn road, Nur-Sultan, 010000, Kazakhstan

Ye.M. Ramankulov

National Center for Biotechnology, 13/5, Kurgalzhyn road, Nur-Sultan, 010000, Kazakhstan


This article presents novel ideas about classification, genomic structure (inverted regions, mobile genetic elements, plasmids, mobilized and conjugated transposons), pathogenicity factors (adhesins, various enzymes, toxins, in particular, data on enterotoxin fragmentinis BFT - B. fragilis toxin), and the role of their metabolites in the manifestation of pathogenicity. Data on the global prevalence of antibiotic resistance in the clinical B. fragilis strains are presented. Mechanisms of development of the drug resistance are considered and the role of cfiA, tet, nim genes in the development of antibiotic resistance is disclosed. Information on the use of the MALDI-TOF MS (matrix-activated laser desorption-ionization time-of-flight mass spectrometry) method for distinguishing B.fragilis strains into two groups based on the ability to carry carbapenem resistant gene (carrying and not carrying cfiA gene) are presented. Basics of modes of emergence of multi-resistance in clinical strains of B. fragilis are considered. In addition, prospects for genome-wide sequencing in predicting antimicrobial resistance are presented. Currently increasing attention of researchers is payed to increase in resistance of B. fragilis to widely used antimicrobials. This is indeed of a great importance when choosing adequate antimicrobial therapy.


Bacteroides fragilis, pathogenicity factors, antibiotic resistance, antimicrobial therapy, the mechanisms of development drug resistance, antibiotic resistance genes

Article Details


Shilnikova I.I., Dmitrieva N.V. Evaluation of antibiotic susceptibility of Bacteroides, Prevotella and Fusobacterium species isolated from patients of the N. N. Blokhin Cancer Research Center, Moscow, Russia. Anaerobe, 2015, vol. 31, pp. 15–18. Crossref

Reid. G. When Microbe Meets Human. Clinical Infectious Diseases, 2004, vol. 39, no. 6, pp. 827–830. Crossref

Litusov N.V. Genus Bacteroides. Illustrated study guide. Yekaterinburg, FSBEI OF Ural State Medical University, 2017, pp.4-17.

Wexler H. M. Bacteroides: the Good, the Bad, and the Nitty-Gritty. Clinical Microbiology Reviews, 2007, vol.20, no.4, pp. 593-621. Crossref.

Krieg, N.R., Ludwig, W., Whitman, W., Hedlund, B.P., Paster, B.J., Staley, J.T., Ward, N., Brown, D., Parte, A. (Eds.) Bergey's manual of systematic bacteriology. NewYork, Springer, 2010, vol.4, pp. 25-469.

Cerdeno-Tarraga A.M, Patrick S, Crossman L.C. et al. Extensive DNA inversions in the B. fragilis genome control variable gene expression. Science, 2005, vol. 307, no. 4, pp.1463-1465.Crossref

Kuwahara T., Yamashita A., Hirakawa H., Nakayama H., Toh H., Okada N., Kuhara S., Hattori M., Hayashi T., Ohnishi Y. Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell surface adaptation. Proc Natl Acad Sci USA. 2004, vol.101, no.41, pp. 14919-14924. Crossref

Wexler H. M. The Genus Bacteroides. In: Rosenberg E., DeLong E.F., Lory S., Stackebrandt E., Thompson F. (eds) The Prokaryotes. Berlin, Heidelberg, Springer, 2014, pp 459-484.Crossref

Nguyen M., Vedantam G. Mobile genetic elements in the genus Bacteroides and their mechanism(s) of dissemination. Mob Genet Elements. 2011, vol.1, no.3, pp. 187–196.Crossref

Supotnitsky M. V. Mechanisms for the development of antibiotic resistance in bacteria. BIO preparations. Prevention, diagnosis, treatment, 2011, vol. 2, no. 42, pp. 4-13.

Bi D., Xu Z., Harrison E., Tai C., Wei Y., He X., Jia S., Deng Z., Rajakumar K., Ou H.Y. ICEberg: a web-based resource for integrative and conjugative elements found in Bacteria. NucleicAcidsRes, 2012, vol. 40, pp.621–626. Crossref

Lofmark S., Fang H., Hedberg M., Edlund C. Inducible metronidazole resistanceandnimgenesinclinicalBacteroidesfragilisgroupisolates. Antimicrob Agents Chemother, 2005, vol.49, pp. 1253-1256.Crossref

Trinh S., Haggoud A., Reysset G., Sebald M. Plasmids plP419 and plP421 from Bacteroides: 5-nitroimidazole resistance genes and their upstream insertion sequence elements. J Microbiology, 1995, vol.141, no.4, pp. 927-935. Crossref

NakanoV., Padilla G., doValle M.M., Avila-Campos M.J Plasmid-relatedbeta-lactamaseproductioninBacteroidesfragilisstrains. Res Microbiol, 2004, vol.155, pp. 843-846.Crossref

Shoemaker N.B., Barber R.D., Salyers A.A. Cloning and characterization of a Bacteroides conjugal tetracycline-erythromycin resistance element by using a shuttle cosmid vector. J Bacteriol, 1989, vol.171, pp. 1294-1302. Crossref

Fadeeva T.V., Dremina N.N., Shurygina I.A., Chepurnykh E.E. Bacteroides fragilis in the development of abdominal surgical infection. Siberian Medical Journal, 2018, vol. 3, pp.5-11.

Coyne M.J., Tzianabos A.O., Mallory B.C.,Polysaccharide biosynthesis locus required for virulence of Bacteroides fragilis. InfectImmun, 2001, vol.69, pp.4342-4350.Crossref

Karlowsky J.A., Walkty A.J., Adam H.J., Baxter M.R., Hoban D.J.,Zhanel G.G. Prevalence of antimicrobial resistance among clinical isolates of Bacteroides fragilis group in Canada in 2010-2011: CANWARD surveillance study. Antimicrob. Agents Chemother, 2012, vol. 56, no. 3, pp. 1247–1252. Crossref.

Hartmeyer G. N., Sóki J., Nagy E., Justesen U. S. Multidrug-resistant Bacteroides fragilis group on the rise in Europe? J Med Microb, 2012, vol.62, no.12, pp. 1784-1788. https://

Boyanova L., Markovska R., Mitov I. Multi drug resistance in anaerobes. Future Microbiology, 2019, vol.14, no.12, pp. 1055-1064. Crossref

Oteo J., Aracil B., Alós J.I., Gómez-Garcés J.L. High prevalence of resistance to clindamycin in Bacteroides fragilis group. Journal of Antimicrobial Chemotherapy, 2000, vol.45, no.5, pp. 691-693. Crossref

Stein G.E., Goldstein E.J. Fluoroquinolones and anaerobes. Clin Infect Dis, 2006, vol.42, pp. 1598-1607. Crossref / 503907

Nagy E., Urbán E., Nord C.E. Antimicrobial susceptibility of Bacteroides fragilis group isolates in Europe: 20 years of experience. Clin Microbiol Infect, 2011, vol. 17, no. 3, pp. 371-379. Crossref.

Snydman D.R., Jacobus N.V., McDermott L.A., Golan Y., Goldstein E.J.C., Harrell L., Jenkins S., Newton D., Pierson C., Rosenblatt J., Venezia R., Gorbach S.L., Queenan A.M., Hecht D.W. Update on resistance of Bacteroides fragilis group and related species with special attention to carbapenems 2006–2009. Anaerobe, 2011, vol. 17, pp. 147-151. Crossref

Lee Y., Park Y.J., Kim M.N., Uh Y., Kim M.S., Lee K. Multicenter study of antimicrobial susceptibility of anaerobic bacteriain Koreain 2012.Ann Lab Med, 2015, vol.35, pp. 479-86. Crossref.

Wang F.D., Liao C.H., Lin Y.T., Sheng W.H., Hsueh P.R. Trends in the susceptibility of commonly encountered clinically significant anaerobes and susceptibilities of blood isolates of anaerobes to 16 antimicrobial agents, including fidaxomicin and rifaximin, 2008-2012, northern Taiwan. Eur J Clin Microbio Infect Dis, 2014, vol.33, pp. 2041-2052.Crossref

Urban E., Horvath Z., Soki J., Lazar G.. First Hungarian case of an infection caused by multidrug-resistant Bacteroides fragilis strain. Anaerobe, 2015, vol. 31, pp.55-58. Crossref. Epub 2014 Oct 5

Sydenham T.V., Overballe-Petersen S., Hasman H., Wexler H., Kemp M., Justesen U.S. Complete hybrid genome assembly of clinical multidrug-resistant Bacteroides fragilis isolates enables comprehensive identification of antimicrobial-resistance genes and plasmids. Microb Genom, 2019, pp. 1-31. Crossref

Edwards R., Read P.N. Expression of the carbapenemase gene (cfiA) in Bacteroides fragilis. J. Antimicrob. Chemother, 2000, vol.46, pp. 1009-1012. Crossref

Toprak N.U., Uzunkaya O.D., Soki J., Soyletir G. Susceptibility profiles and resistance genes for carbapenems (cfiA) and metronidazole (nim) among Bacteroides species in a Turkish University Hospital. Anaerobe, 2012, vol.18, pp. 169-171.Crossref

Gal M., Brazier J.S. Metronidazole resistance in Bacteroides spp. carrying nim genes and the selection of slow-growing metronidazole-resistant mutants. J Antimicrob Chemother, 2004, vol.54, pp. 109-116.Crossref

Vieira B.D., Boente J.M., Rodrigues R.F., Miranda K., Avelar K.E., M C P Domingues R., Candida de S Ferreira M. Decreased susceptibility to nitroimidazoles among Bacteroides species in Brazil. Curr Microbiol, 2006, vol.52, pp. 27-32.Crossref

Chaudhry R., Mathur P., Dhawan B., Kumar L.. Emergence of metronidazole-resistant Bacteroides fragilis, India. Emerg Infect Dis, 2001, vol.7, pp. 485-486.Crossref

Schapiro J.M., Gupta R., Stefansson E., Fang F.C,. Limaye A.P. Isolation of metronidazole-resistant Bacteroides fragilis carrying the nim Anitroreductase gene from a patient in Washington State. J Clin Microbiol, 2004, vol.42, pp. 4127-4129.Crossref

Nagy E., Soki J., Urban E., Szoke I., Fodor E., Edwards R. Occurrence of metronidazole and imipenem resistance among Bacteroides fragilis group clinical isolates in Hungary. Acta Biol Hung, 2001, vol.52, pp. 271-280. Crossref

Nagy E., Becker S., Sóki J., Urbán E., Kostrzewa M. Differentiation of division I (cfiA-negative) and division II (cfiA-positive) Bacteroides fragilis strains by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Journal of Medical Microbiology, 2011, vol.60, pp. 1584-1590. Crossref

Nagy, E. Anaerobic infections: update on treatment considerations. Drugs, 2010, vol.70, pp. 841-858.Crossref

Sóki J., Fodor E., Hecht D. W., Edwards R., Rotimi V.O., Kerekes I., Urbán E.,Nagy E. Molecular characterization of imipenem-resistant, cfiA-positive Bacteroides fragilis isolates from the USA, Hungary and Kuwai. J Med Microbiol, 2004, vol.53, no. 5.pp.413-419.https://

Wybo I., De Bel A., Soetens O., Echahidi F., Vandoorslaer K., Van Cauwenbergh M., Piérard D. Differentiation of cfiA-negative and cfiA-positive Bacteroides fragilis isolates by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol, 2011, vol.49, pp. 1961-1964. Crossref

Ghotaslou R., Yekani M., Memar M.Y. The role of efflux pumps in Bacteroides fragilis resistance to antibiotics. Microbiological Research, 2018, vol. 210, pp. 1-5. Crossref

Zankari E., Hasman H., Kaas R.S., Seyfarth A.M., Agersø Y., Lund O., Larsen M.V., Aarestrup F.M. Genotyping using whole-genome sequencing is a realistic alternative to surveillance based on phenotypic antimicrobial susceptibility testing. J Antimicrob Chemother. 2013, vol.68, pp. 771-777. Crossref

Ellington M.J., Ekelund O., Aarestrup F.M., Canton R., Doumith M., Giske C., Grundman H., Hasman H., Holden M.T.G., Hopkins K.L., Iredell J., Kahlmeter G., Köser C.U., MacGowan A., Mevius D.2, Mulvey M., Naas T., Peto T., Rolain J.M., Samuelsen O., Woodford N. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee. Clin Microbiol Infect, 2017, vol. 23, pp. 2-22. Crossref

Sydenham T.V., Overballe-Petersen S., Hasman H., Wexler H., Kemp M., Justesen U.S.Complete hybrid genome assembly of clinical multidrug-resistant Bacteroides fragilis isolates enables comprehensive identification of antimicrobial-resistance genes and plasmids. Microb Genom, 2019, vol.5, no.11, pp.1-18. Crossref

Köser C.U., Ellington M.J., Cartwright E.J., Gillespie S.H., Brown N.M., Farrington M., Holden M.T., Dougan G., Bentley S.D., Parkhill J., Peacock S.J. Routine use of microbial whole genome sequencing in diagnostic and public health microbiology. PLoS Pathog, 2012, vol. 8, no.8, e1002824.Crossref