COMPARATIVE ANALYSIS OF PHYSIOLOGICAL RESPONSES OF POTATO SEEDLINGS TO OSMOTIC STRESS OF DIFFERENT INTENSITIES
Main Article Content
Authors
S.A. Manabayeva
National Center for Biotechnology, 13/5, Qorghalzhyn Hwy., Astana, 010000, Kazakhstan
L.N.Gumilyov Eurasian National University, Satpayev st. 2, Astana, 010000, Kazakhstan
West Kazakhstan Agro-Technical University named after Zhangir Khan, Zhangir khan street 51, Oral, 090009, Kazakhstan
Abstract
Drought is one of the most significant abiotic stresses that limit plant growth and crop productivity. This study analyzed the physiological responses of potato (Solanum tuberosum L.) seedlings to osmotic stress induced by polyethylene glycol (PEG-6000) at concentrations of 0, 2, 4, 6, and 8%. High concentrations of PEG-6000 were found to significantly inhibit seedling growth and reduc chlorophyll content. Physiological analysis revealed decreased in malondialdehyde (MDA) levels and increased catalase (CAT) activity under osmotic stress conditions. These results deepen our understanding of the physiological processes and internal mechanisms of potato drought tolerance, including changes in chlorophyll content. This knowledge can be applied to breeding programs that develop cultivars resistant to abiotic stresses.
Keywords
Solanum tuberosum L., in vitro, PEG-6000, chlorophyll, MDA, CAT
Article Details
References
Wang G. Agricultural drought in a future climate: results from 15 global climate models participating in the IPCC 4th assessment // Climate Dynamics. − 2005. − Vol. 25, № 7. –P. 739-753.
Gao H.J., et al. Ultrastructural and physiological responses of potato (Solanum tuberosum L.) plantlets to gradient saline stress // Frontiers in Plant Science. − 2014. − Vol. 5. − Article 787.
Levy D., Veilleux R.E. Adaptation of potato to high temperatures and salinity − a review // American Journal of Potato Research. − 2007. − Vol. 84, № 6. − P. 487-506.
Deblonde P., Ledent J.-F. Effects of moderate drought conditions on green leaf number, stem height, leaf length and tuber yield of potato cultivars // European Journal of Agronomy. − 2001. − Vol. 14, № 1. − P. 31-41.
Yamori W., et al. Effects of Rubisco kinetics and Rubisco activation state on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures // Plant, Cell and Environment. − 2006. − Vol. 29, № 8. − P. 1659-1670.
Ma Q., et al. Sodium chloride improves photosynthesis and water status in the succulent xerophyte Zygophyllum xanthoxylum // Tree Physiology. − 2012. − Vol. 32, № 1. − P. 4-13.
Lichtenthaler H.K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes // Methods in Enzymology. − 1987. − Vol. 148. − P. 350-382.
Wang X., et al. Dynamics of physiological and biochemical effects of heat, drought and combined stress on potato seedlings // Chemical and Biological Technologies in Agriculture. − 2024. − Vol. 11, № 1. − Article 109.
Demirel U., et al. Physiological, biochemical, and transcriptional responses to single and combined abiotic stress in stress-tolerant and stress-sensitive potato genotypes // Frontiers in Plant Science. − 2020. − Vol. 11. − Article 169.
Gervais T., et al. Potato response to drought stress: physiological and growth basis // Frontiers in Plant Science. − 2021. − Vol. 12. − Article 698060.
Boguszewska-Mańkowska D., Zarzyńska K., Wasilewska-Nascimento B. Potato (Solanum tuberosum L.) Plant Shoot and Root Changes under Abiotic Stresses − Yield Response // Plants. − 2022. − Vol. 11, № 24. − Article 3568.
Zinta R., et al. Root system architecture for abiotic stress tolerance in potato: Lessons from plants // Frontiers in Plant Science. − 2022. − Vol. 13. − Article 926214.
Nasir M.W., Toth Z. Effect of drought stress on potato production: A review // Agronomy. − 2022. − Vol. 12, № 3. − Article 635.
Fang G., et al. Research progress on physiological, biochemical, and molecular mechanisms of potato in response to drought and high temperature // Horticulturae. − 2024. − Vol. 10, № 8. − Article 827.
Sharma A., et al. Nitric oxide‐mediated regulation of oxidative stress in plants under metal stress: a review on molecular and biochemical aspects // Physiologia Plantarum. − 2020. − Vol. 168, № 2. − P. 318-344.
Han Q.Q., et al. Beneficial soil bacterium Bacillus subtilis (GB03) augments salt tolerance of white clover // Frontiers in Plant Science. − 2014. − Vol. 5. − Article 525.
Singh M., et al. Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review // Reviews in Environmental Science and Bio/Technology. − 2015. − Vol. 14, № 3. − P. 407-426.
Lawlor D. Absorption of polyethylene glycols by plants and their effects on plant growth // New Phytologist. − 1970. − Vol. 69, № 2. − P. 501-513.
Deinlein U., et al. Plant salt-tolerance mechanisms // Trends in Plant Science. − 2014. − Vol. 19, № 6. − P. 371-379.
Chaves M.M., Oliveira M.M. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture // Journal of Experimental Botany. − 2004. − Vol. 55, № 407. − P. 2365-2384.
Abeuova, L. S., Kali, B. R., Rakhimzhanova, A. O., Bekkuzhina, S. S., Manabayeva, S. A. Osobennosti pryamoy regeneratsii otechestvennykh sortov kartofelya v kul'ture in vitro // Vestnik KazNU. Biological series. − 2020. − Т. 83, № 2. − С. 34-41. [in Russian]
Murashige, T. and F. Skoog, A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum. − 1962. − Р. 15(3).
Lichtenthaler H.K., Wellburn A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents // Portland Press Ltd. − 1983.
Shlyk A. Opredeleniye khlorofillov i karotinoidov v ekstraktakh zelenykh list'yev // Biochemical methods in plant physiology. Moscow: Science. − 1971. − Т. 19, № 1. − С. 154-161. [in Russian]
Peng Zhen, Hе Shou-Pu, Sun Jun-Ling, Xu Fei-Fei, Jia Yin-Hua, Pan Zhao-E,Wang Li-Ru, Du Xiong-Ming. An Efficient Approach to Identify Salt Tolerance of Upland Cotton at Seedling Stage // Acta Agron Sin. − 2014. − Vol.40(03). − Р. 476-486.
Dilnur, T., Peng. Z., Pan. Z., Palanga K.K., Jia Y., Gong W., Du X. Association Analysis of Salt Tolerance in Asiatic cotton (Gossypium arboretum) with SNP Markers. // International Journal of Molecular Sciences. − 2019. − Vol. 20, № 9. − Article 2168.
Havir E.A., McHale N.A. Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves // Plant Physiology. − 1987. − Vol. 84, № 2. − P. 450-455.
Shao H.B., Chu L.Y., Jaleel C.A., Zhao C.X. Water-deficit stress-induced anatomical changes in higher plants. C R Biol. 2008 Mar;331(3):215-25. Comptes rendus biologies. − 2008. − Vol. 331, № 3. − P. 215-225.
Gopal J., Iwama K. In vitro screening of potato against water-stress mediated through sorbitol and polyethylene glycol // Plant Cell Reports. – 2007. – Vol. 26, № 5. – P. 693-700.
Claussen W. Proline as a measure of stress in tomato plants // Plant Science. – 2005. –Vol. 168, № 1. – P. 241-248.
George S., Nasir M. M., Shakeel A. J., Sadar U. S., Ghafoor A. Impact of polyethylene glycol on proline and membrane stability index for water stress regime in tomato (Solanum lycopersicum) // Pakistan Journal of Botany. – 2015. – Vol. 47, № 3. – P. 835-844.
Sahoo, M.R., Devi, T.R., Dasgupta, M. et al. Reactive oxygen species scavenging mechanisms associated with polyethylene glycol mediated osmotic stress tolerance in Chinese potato // Scientific Reports. – 2020. – Vol. 10, № 1. – Article 5404.
Ueda A., Shi W., Sanmiya K., Shono M., Takabe T. Functional analysis of salt-inducible proline transporter of barley roots // Plant and Cell Physiology. – 2001. – Vol. 42, № 11. – P. 1282-1289.
Kidokoro S, Maruyama K, Nakashima K, Imura Y, Narusaka Y, Shinwari ZK, Osakabe Y, Fujita Y, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. The phytochrome-interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis // Plant Physiology. – 2009. – Vol. 151, № 4. – P. 2046-2057.
Kaya C., Tuna L., Higgs D. Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions // Journal of Plant Nutrition. – 2006. – Vol. 29, № 8. – P. 1469-1480.
Dhanda S., Sethi G., Behl R. Indices of drought tolerance in wheat genotypes at early stages of plant growth // Journal of Agronomy and Crop Science. – 2004. – Vol. 190, № 1. – P. 6-12.
Yazici, I., Turkan, I., Sekmen, A.H. and Demiral, T. Salinity tolerance of Purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline Accumulation // Environmental and Experimental Botany. – 2007. – Vol. 61, № 1. – P. 49-57.
Li L., Van Staden J., Jäger A. Effects of plant growth regulators on the antioxidant system in seedlings of two maize cultivars subjected to water stress // Plant Growth Regulation. – 1998. – Vol. 25, № 2. – P. 81-87.
Gao H.J., Yang H.Y., Bai J.P., Liang X.Y., Lou Y., Zhang J.L., Wang D., Zhang J.L., Niu S.Q., Chen Y.L. Ultrastructural and physiological responses of potato (Solanum tuberosum L.) plantlets to gradient saline stress // Acta Physiologiae Plantarum. – 2016. – Vol. 38, № 7. – Article 182.
Dilovarova N.S., Norkulov N.KH., Davlyatnazarova Z.B., Kasparova I.S., Sadriddinov M., Aliyev K. Induktsiya antioksidantnoy sistemy rasteniy kartofelya Solanum tuberosum L. v usloviyakh zasukhi // Bulletin of the Academy of Sciences of the Republic of Tajikistan. Department of Biological and Medical Sciences. – 2020. № 2. – С. 38-45. [in Russian]
Kirgizova I., Gadzhimuradova A., Omarov R. Osobennosti nakopleniya antioksidantnykh fermentov u kartofelya v usloviyakh bioticheskogo i abioticheskogo stressa // News of universities. Applied chemistry and biotechnology. – 2018. – Т. 8, № 4 (27). – С. 42–54. [in Russian]