GENETIC DIVERSITY ANALYSIS OF ZEA MAYS L. ACCESSIONS BASED ON MICROSATELLITE MARKERS
Main Article Content
Authors
A.K. Ortaev
Krasnovodopad Agricultural Experimental Station, Turkestan region, Kazakhstan
S.P. Makhmadzhanov
Agricultural Experimental Station for Cotton and Melon Growing, Turkestan region, Kazakhstan
Abstract
This study aimed to evaluate the genetic diversity of 21 maize (Zea mays L.) accessions cultivated in Kazakhstan using 21 SSR markers. The selected markers revealed substantial polymorphism, with polymorphic information content (PIC) values ranging from 0.557 to 0.962, indicating high marker informativeness. Genetic diversity indices such as the number of alleles (Na), effective number of alleles (Ne), Shannon’s information index (I), and Nei’s gene diversity index (uh) varied significantly among accessions, with the Kazakh accession ZM001 showing the highest diversity. Analysis of Molecular Variance (AMOVA) revealed that 66% of the total genetic variation was attributable to differences among accessions, confirming strong population differentiation (Fst = 0.611) among maize accessions. Cluster analysis, Principal Coordinate Analysis (PCoA), and STRUCTURE analysis consistently grouped accessions according to their geographic origin, distinguishing local, Chinese, and European accessions. These results highlight the effectiveness of SSR markers in revealing genetic structure and demonstrate the existence of untapped allelic variation in the maize germplasm of Kazakhstan.
Keywords
Zea mays, SSR markers, genetic diversity, analysis of molecular variance
Article Details
References
Kumari, A., Sinha, S., Rashmi, K., Mandal, S. S., & Sahay, S. (2018). Genetic diversity analysis in maize (Zea mays L.) using SSR markers. Journal of Pharmacognosy and Phytochemistry, 7(1S), 1116-1120.
William S. K., Michael R. C. Essentials of genetics // New Jersey, USA: Prentice Hall, 2002. – 508 p.
Shiferaw, B., Prasanna, B. M., Hellin, J., & Bänziger, M. (2011). Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food security, 3, 307-327. Crossref
Sembayeva, A. S., Ospanbayev, Z., Zhapayev, R. K., Kenenbaуev, S. B., Pejic, B., Kunypiyaeva, G. T., ... & Bekbauov, M. (2025). Corn hybrids assessment for grain yield under the soil tillage regimes and drip irrigation in Southeast Kazakhstan. SABRAO Journal of Breeding and Genetics, 57(1). Crossref
Senior ML, Murphy JP, Goodman MM, Stuber CW. Utility of SSRs for determining genetic similarities and relationships in maize using an agarose gel system. Crop Science. 1998;38(4):1088–1098. Crossref
Legesse BW, Pixley KV, Botha AM. Genetic diversity of African maize inbred lines revealed by SSR markers. Hereditas. 2007;144(1):10–17. Crossref
Warburton ML, Xia XC, Crossa J, et al. Genetic characterization of CIMMYT inbred maize lines and open pollinated populations using large scale fingerprinting methods. Crop Science. 2002;42(6):1832–1840. Crossref
Dubreuil P, Warburton ML, Chastanet M, Hoisington D, Charcosset A. More than ten years of experience in SSR fingerprinting of maize: A review. Maydica. 2006;51:397–408.
Tynykulov M. (2022). Corn productivity in Northern Kazakhstan. Izdenister Natigeler, (3 (95), 54–62. Crossref
Ibragimova K, Akhmetzhanov D, Sarsenbayev M, Genetic assessment of maize (Zea mays L.) hybrids cultivated in Southern Kazakhstan using SSR markers. Journal of Agricultural Science and Technology. 2018;20(4):803–813.
Govindaraj M, Vetriventhan M, Srinivasan M. Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genetics Research International. 2015;2015:431487. Crossref
Beyene Y, Botha AM, Myburg AA. Genetic diversity in traditional Ethiopian highland maize accessions assessed by AFLP markers and morphological traits. Biodiversity and Conservation. 2006;15(12):4219–4238. Crossref
Aci MM, Tuberosa R, Agrama H. Assessment of genetic diversity and population structure of Algerian maize inbred lines using SSR markers. African Journal of Agricultural Research. 2013;8(24):3060–3068.
Dellaporta, S.L., Wood, J. & Hicks, J.B. A plant DNA minipreparation: Version II. Plant Mol Biol Rep 1, 19–21 (1983). Crossref
Ranatunga, M. A. B., Meenakshisundaram, P., Arumugachamy, S., & Maheswaran, M. (2009). Genetic diversity analysis of maize (Zea mays L.) inbreds determined with morphometric traits and simple sequence repeat markers. Maydica, 54(1), 113.
Belalia, N., Lupini, A., Djemel, A., Morsli, A., Mauceri, A., Lotti, C., ... & Sunseri, F. (2019). Analysis of genetic diversity and population structure in Saharan maize (Zea mays L.) populations using phenotypic traits and SSR markers. Genetic Resources and Crop Evolution, 66, 243-257. DOI: 10.1007/s10722-018-0709-3
Bocianowski, J., Nowosad, K., Wróbel, B., & Szulc, P. (2021). Identification of associations between SSR markers and quantitative traits of maize (Zea mays L.). Agronomy, 11(1), 182. Crossref
Suhasini, B., Ravikesavan, R., & Yuvaraja, A. (2023). Microsatellite marker based genetic diversity study in sweet corn inbreds (Zea mays L. Saccharata). Plant Archives, 23(2), 338-341. DOI: 10.51470/PLANTARCHIVES.2023.v23.no2.058
Patel R., Memon J., Kumar S., Patel D. A., Sakure A. A., Patel M. B. & Roychowdhury R. (2024). Genetic Diversity and Population Structure of Maize (Zea mays L.) Inbred Lines in Association with Phenotypic and Grain Qualitative Traits Using SSR Genotyping. Plants, 13(6), 823. Crossref
Peakall R., Smouse P. E. GenAlEx 6.5: Genetic analysis inExcel. Population genetic software for teaching and research– an update // Bioinformatics. – 2012. – Vol. 28(19). – P. 2537-2539. Crossref
Botstein, D.; White, R.L.; Skolnick, M.; Davis, R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 1980, 32, 314–331. PMID: 6247908
Hammer, Ø., Harper, D. A. T., Ryan, P. D. PAST: Paleontological statistics software package for education anddata analysis // Palaeontologia Electronica. – 2001. – Vol. 4(1). – P. 4-9.
Pritchard, J.K.; Stephens, M.; Donnelly., P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. Crossref
Evanno, G., Regnaut, S., Goudet, J. Detecting the numberof clusters of individuals using the software STRUCTURE: A simulation study // Molecular Ecology. – 2005. – Vol. 14(8). – P. 2611-2620. Crossref
Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A., & Mayrose, I. (2015). Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Molecular ecology resources, 15(5), 1179-1191. Crossref