PRECLINICAL DEVELOPMENT OF A CHIMERIC YELLOW FEVER / TICK-BORNE ENCEPHALITIS VIRUS AS A CANDIDATE VACCINE

Main Article Content

Authors

T. Kulatay

National Center for Biotechnology, Astana, Kazakhstan, 13/5, Kurgalzhyn road, 010000

E. Sedova

National Center for Biotechnology, Astana, Kazakhstan, 13/5, Kurgalzhyn road, 010000

A. Shevtsov

National Center for Biotechnology, Astana, Kazakhstan, 13/5, Kurgalzhyn road, 010000

G. Zauatbayeva

National Center for Biotechnology, Astana, Kazakhstan, 13/5, Kurgalzhyn road, 010000

B. Ingirbay

National Center for Biotechnology, Astana, Kazakhstan, 13/5, Kurgalzhyn road, 010000

V. Keyer

National Center for Biotechnology, Astana, Kazakhstan, 13/5, Kurgalzhyn road, 010000

Zh. Shakhmanova

National Center for Biotechnology, Astana, Kazakhstan, 13/5, Kurgalzhyn road, 010000

M. Zhumabekova

National Center for Biotechnology, Astana, Kazakhstan, 13/5, Kurgalzhyn road, 010000

Ye. Abduraimov

National Holding QazBioPharm, Astana, Kazakhstan, 13/5, Kurgalzhyn road, 010000

A. Rsaliyev

National Holding QazBioPharm, Astana, Kazakhstan, 13/5, Kurgalzhyn road, 010000

N. Sikhayeva

National Holding QazBioPharm, Astana, Kazakhstan, 13/5, Kurgalzhyn road, 010000

I. Kozlova

Federal State Budgetary Scientific Institution «Scientific Сentre for Family Health and Human

A. Shustov

National Center for Biotechnology, Astana, Kazakhstan, 13/5, Kurgalzhyn road, 010000

Abstract

Tick-borne encephalitis virus (TBEV) is a reemerging pathogen in Kazakhstan. Despite the availability of inactivated TBEV vaccines produced abroad, their reliance on complex multi-dose regimens and frequent boosters limits their implementation for routine use in Kazakhstan. New technologies, including chimerization of different Flavivirus species, enable the development of vaccine candidates which require only a single dose to achieve long-lasting immunity. The ChimeriVax platform leverages the efficient replication machinery of the yellow fever virus (YFV) 17D vaccine strain engineered to express the structural proteins of a different flavivirus.

In this work, the ChimeriVax YFV/TBEV virus was created by replacing the prM-E genes in the YFV genome with the prM-E genes of TBEV. Preclinical evaluation demonstrated robust replication (~10^8 focus-forming units, FFU/mL) in cell cultures and genetic stability over multiple passages. In murine models, the chimeric virus elicited transient viremia (peaking at 10^4 FFU/mL) without mortality even at high doses (10^5 FFU). Immunization induced potent neutralizing antibodies (geometric mean titer: 4,076) and robust cellular immunity, marked by production of the cytokines IFN-γ, TNF-α, and IL-2 upon antigen stimulation. These results position the ChimeriVax YFV/TBEV virus as a promising vaccine candidate.

Keywords

live-attenuated vaccine, chimeric flavivirus vaccine, Tick-borne encephalitis virus, neutralizing antibodies, cellular immunity, preclinical development

Article Details

References

Bogovic C., Strle F. Tick-borne encephalitis: A review of epidemiology, clinical characteristics, and management // World J Clin Cases. – 2015. – T.3. – № 5. – P.430–441.

Kwasnik M., Rola J., Rozek W. Tick-Borne Encephalitis—Review of the Current Status // J Clin Med. – 2023. – T.12. – № 1. – P.1–14.

Shin A., et al. Tick-borne encephalitis virus and West-Nile fever virus as causes of serous meningitis of unknown origin in Kazakhstan // Zoonoses Public Health. – 2022. – T.69. – № 5. – P.514–525.

Perfilyeva Y.V., et al. Tick-borne pathogens and their vectors in Kazakhstan – A review // Ticks Tick Borne Dis. – 2020. – T.11. – № 3. – P.101498.

Heinz F.X., Stiasny K. Flaviviruses and flavivirus vaccines // Vaccine. – 2012. – Vol.30. – No.29. – P.4301–4306// doi: 10.1016/j.vaccine.2011.09.114.

Monath T.P., McCarthy K., Bedford P., Johnson C.T., Nichols R., Yoksan S., Marchesani R., Knauber M., Wells K.H., Arroyo J., Guirakhoo F. Clinical proof of principle for ChimeriVax: recombinant live, attenuated vaccines against flavivirus infections // Vaccine. – 2002. – Vol.20. – No.7–8. – P.1004–1018// doi: 10.1016/s0264-410x(01)00457-1.

Guy B., Guirakhoo F., Barban V., Higgs S., Monath T.P., Lang J. Preclinical and clinical development of YFV 17D-based chimeric vaccines against dengue, West Nile and Japanese encephalitis viruses//Vaccine. – 2010. – Vol.28. – No.3. – P.632–649// doi: 10.1016/j.vaccine.2009.09.098.

Furuya-Kanamori L., Gyawali N., Mills D.J., Mills C., Hugo L.E., Devine G.J., Lau C.L. Immunogenicity of a single fractional intradermal dose of Japanese encephalitis live attenuated chimeric vaccine // J Travel Med. – 2023. – T.30. – P.209–229.

Torres-Flores J.M., Reyes-Sandoval A., Salazar M.I. Dengue Vaccines: An Update // BioDrugs. – 2022. – Vol.36. – No.3. – P.325–336// doi: 10.1007/s40259-022-00531-z.

Hou J., Ye W., Chen J. Current Development and Challenges of Tetravalent Live-Attenuated Dengue Vaccines // Front Immunol. – 2022. – T.13. – P.840–844.

Torresi J., Ebert G., Pellegrini M. Vaccines licensed and in clinical trials for the prevention of dengue // Hum Vaccin Immunother. – 2017. – T.13. – P.1059–1072.

Diaz-Quijano F.A., Siqueira C.D., Raboni S.M., Shimakura S.E., Maron M.A., Vieira C.M., Silva L., Cruz M.B.M., Cesario C.E., Graeff G. Effectiveness of mass dengue vaccination with CYD-TDV (Dengvaxia) in the state of Paraná, Brazil: integrating case-cohort and case-control designs // Lancet Reg Health Am. – 2024. – T.35. – P.200–207.

Brand C., Bisaillon M., Geiss B.J. Organization of the Flavivirus RNA replicase complex // Wiley Interdiscip Rev RNA. – 2017. – Vol.8. – No.6. – P.1437//. doi: 10.1002/wrna.1437.

Kuznetsova N., Siniavin A., Butenko A., Larichev V., Kozlova A., Usachev E., Nikiforova M., Usacheva O., Shchetinin A. Development and characterization of chimera of yellow fever virus vaccine strain and Tick-Borne encephalitis virus // PLoS One. – 2023. – T.18.

Flipse J., Smit J.M. The Complexity of a Dengue Vaccine: A Review of the Human Antibody Response // PLoS Negl Trop Dis. – 2015. – Vol.9. – №.6.// doi: 10.1371/journal.pntd.0003749.