PRODUCTION OF MODIFIED RNA-DEPENDENT DNA POLYMERASE OF HUMAN IMMUNODEFICIENCY VIRUS FOR USE AS REVERSE TRANSCRIPTASE
Main Article Content
Authors
Abstract
Human immunodeficiency virus reverse transcriptase is an RNA-dependent DNA polymerase that allows the production of complementary DNA on an RNA matrix. The original amino acid sequence of the reverse transcriptase was modified by making 18 substitutions and codonoptimized for expression in Escherichia coli cells. A plasmid vector in which the modified HIV reverse transcriptase gene was integrated under the control of the inducible promoter was obtained by restriction-free cloning. Transformation of competent E. coli cells with this vector yielded a strain producing recombinant modified HIV reverse transcriptase with a molecular mass of 62.5 kDa. The recombinant enzyme was chromatographically purified by two-step elution on Ni2+ ions and heparin, yielding 420 mg from 1 liter of induced culture. The RNA-dependent DNA polymerase activity of the purified enzyme was confirmed on RNA samples isolated from Secale cereale and human blood by amplification of 18S rRNA and actin B gene fragments, respectively. The recombinant modified reverse transcriptase exhibits polymerase activity in the temperature range of 50-70ºС, indicating its thermostability. Biochemical parameters show the promising application of the enzyme as a reverse transcriptase in scientific research and diagnostic practice.
Keywords
RNA, DNA, RNA-dependent DNA polymerase, HIV, E.coli, chromatography
Article Details
References
Baltimore, D., Discovery of the reverse transcriptase. Faseb j, 1995. 9(15): p. 1660-3. 10.1096/fasebj.9.15.8529847.
Goff, S.P., Retroviral reverse transcriptase: synthesis, structure, and function. J Acquir Immune Defic Syndr (1988), 1990. 3(8): p. 817-31. PMID: 1694894.
Autexier, C. and N.F. Lue, The Structure and Function of Telomerase Reverse Transcriptase. Annual Review of Biochemistry, 2006. 75(1): p. 493-517. 10.1146/annurev.biochem.75.103004.142412.
Bahrami, F. and J.L. Jestin, Streptococcus agalactiae DNA polymerase I is an efficient reverse transcriptase. Biochimie, 2008. 90(11-12): p. 1796-9. 10.1016/j.biochi.2008.07.006.
Zimmerly, S. and L. Wu, An Unexplored Diversity of Reverse Transcriptases in Bacteria. Microbiol Spectr, 2015. 3(2): p. 0058-2014. 10.1128/microbiolspec.MDNA3-0058-2014.
Lim, D. and W.K. Maas, Reverse transcriptase in bacteria. Mol Microbiol, 1989. 3(8): p. 1141-4.
Lampson, B.C., et al., Reverse transcriptase in a clinical strain of Escherichia coli: production of branched RNA-linked msDNA. Science, 1989. 243(4894 Pt 1): p. 1033-8. 10.1126/science.2466332.
• 8. Jackson, L.N., et al., Crystal structures of a natural DNA polymerase that functions as an XNA reverse transcriptase. Nucleic Acids Res, 2019. 47(13): p. 6973-6983. 10.1093/nar/gkz513.
Silas, S., et al., Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein. Science, 2016. 351(6276): p. aad4234. 10.1126/science.aad4234.
Sontheimer, E.J. and L.A. Marraffini, RNA. CRISPR goes retro. Science, 2016. 351(6276): p. 920-1.
Houts, G.E., et al., Reverse transcriptase from avian myeloblastosis virus. J Virol, 1979. 29(2): p. 517-22. 10.1126/science.aaf2851.
Moelling, K., Characterization of reverse transcriptase and RNase H from friend-murine leukemia virus. Virology, 1974. 62(1): p. 46-59. 10.1016/0042-6822(74)90302-x.
Malik, O., et al., The mechano-chemistry of a monomeric reverse transcriptase. Nucleic Acids Res, 2017. 45(22): p. 12954-12962. 10.1093/nar/gkx1168.
North, T.W., et al., Characterization of reverse transcriptase from feline immunodeficiency virus. J Biol Chem, 1990. 265(9): p. 5121-8. PMID: 1690735.
Perach, M. and A. Hizi, Catalytic features of the recombinant reverse transcriptase of bovine leukemia virus expressed in bacteria. Virology, 1999. 259(1): p. 176-89. 10.1006/viro.1999.9761.
Avidan, O., et al., The processivity and fidelity of DNA synthesis exhibited by the reverse transcriptase of bovine leukemia virus. Eur J Biochem, 2002. 269(3): p. 859-67. 10.1046/j.0014-2956.2001.02719.x.
Benzair, A.B., et al., Reverse transcriptase from simian foamy virus serotype 1: purification and characterization. J Virol, 1982. 44(2): p. 720-4. 10.1128/JVI.44.2.720-724.1982.
Muñoz, J.L., et al., HIV-1 reverse transcriptase. A diversity generator and quasispecies regulator. Ann N Y Acad Sci, 1993. 693: p. 65-70. 10.1111/j.1749-6632.1993.tb26257.x.
Tarrago-Litvak, L., et al., The reverse transcriptase of HIV-1: from enzymology to therapeutic intervention. Faseb j, 1994. 8(8): p. 497-503. 10.1096/fasebj.8.8.7514143.
Bird, L.E., et al., Cloning, expression, purification, and crystallisation of HIV-2 reverse transcriptase. Protein Expr Purif, 2003. 27(1): p. 12-8. 10.1016/s1046-5928(02)00567-3.
van den Ent, F. and J. Löwe, RF cloning: a restriction-free method for inserting target genes into plasmids. J Biochem Biophys Methods, 2006. 67(1): p. 67-74. 10.1016/j.jbbm.2005.12.008.
Sanger, F., S. Nicklen, and A.R. Coulson, DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A, 1977. 74(12): p. 5463-7. 10.1073/pnas.74.12.5463.
Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976. 72: p. 248-54. 10.1016/0003-2697(76)90527-3.
Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970. 227(5259): p. 680-5. 10.1038/227680a0.
Arezi, B. and H. Hogrefe, Novel mutations in Moloney Murine Leukemia Virus reverse transcriptase increase thermostability through tighter binding to template-primer. Nucleic Acids Res, 2009. 37(2): p. 473-81. 10.1093/nar/gkn952.
Yasukawa, K., et al., Increase in thermal stability of Moloney murine leukaemia virus reverse transcriptase by site-directed mutagenesis. J Biotechnol, 2010. 150(3): p. 299-306. 10.1016/j.jbiotec.2010.09.961.
Katano, Y., et al., Expression of moloney murine leukemia virus reverse transcriptase in a cell-free protein expression system. Biotechnol Lett, 2016. 38(7): p. 1203-11. 10.1007/s10529-016-2097-0.
Baba, M., et al., Further increase in thermostability of Moloney murine leukemia virus reverse transcriptase by mutational combination. Protein Eng Des Sel, 2017. 30(8): p. 551-557. 10.1093/protein/gzx046.
Katano, Y., et al., Generation of thermostable Moloney murine leukemia virus reverse transcriptase variants using site saturation mutagenesis library and cell-free protein expression system. Biosci Biotechnol Biochem, 2017. 81(12): p. 2339-2345. 10.1080/09168451.2017.1394790.
Álvarez, M. and L. Menéndez-Arias, Temperature effects on the fidelity of a thermostable HIV-1 reverse transcriptase. Febs j, 2014. 281(1): p. 342-51. 10.1111/febs.12605.
Zhang, W.H., et al., Y586F mutation in murine leukemia virus reverse transcriptase decreases fidelity of DNA synthesis in regions associated with adenine-thymine tracts. Proc Natl Acad Sci U S A, 2002. 99(15): p. 10090-5. 10.1073/pnas.152186199.
Svarovskaia, E.S., et al., Retroviral mutation rates and reverse transcriptase fidelity. Front Biosci, 2003. 8: p. d117-34. 10.2741/957.
Mbisa, J.L., G.N. Nikolenko, and V.K. Pathak, Mutations in the RNase H primer grip domain of murine leukemia virus reverse transcriptase decrease efficiency and accuracy of plus-strand DNA transfer. J Virol, 2005. 79(1): p. 419-27. 10.1128/JVI.79.1.419-427.2005.
Menéndez-Arias, L., Molecular basis of fidelity of DNA synthesis and nucleotide specificity of retroviral reverse transcriptases. Prog Nucleic Acid Res Mol Biol, 2002. 71: p. 91-147. 10.1016/s0079-6603(02)71042-8.
Kotewicz, M.L., et al., Isolation of cloned Moloney murine leukemia virus reverse transcriptase lacking ribonuclease H activity. Nucleic Acids Res, 1988. 16(1): p. 265-77. 10.1093/nar/16.1.265.