SELECTION OF MARKER REGIONS OF GENES FOR THE MOLECULAR IDENTIFICATION OF HELMINTHS OF THE ASCARIDOIDEA SUPERFAMILY FOUND IN COD FISH

Main Article Content

Authors

K.T. Jazina

National Center for Biotechnology, 13/5, Kurgalzhyn road, 010000, Astana, Kazakhstan.
 S. Seifullin Kazakh Agrotechnical Research University, Zhenis avenue, 62, 010000, Astana, Kazakhstan.

R.S. Uakhit

National Center for Biotechnology, 13/5, Kurgalzhyn road, 010000, Astana, Kazakhstan.
Seifullin Kazakh Agrotechnical Research University, Zhenis avenue, 62, 010000, Astana, Kazakhstan.

A.M. Smagulova

National Center for Biotechnology, 13/5, Kurgalzhyn road, 010000, Astana, Kazakhstan.
Seifullin Kazakh Agrotechnical Research University, Zhenis avenue, 62, 010000, Astana, Kazakhstan.

D.M. Valeyeva

S. Seifullin Kazakh Agrotechnical Research University, Zhenis avenue, 62, 010000, Astana, Kazakhstan

N.S. Manapov

National Center for Biotechnology, 13/5, Kurgalzhyn road, 010000, Astana, Kazakhstan.
S. Seifullin Kazakh Agrotechnical Research University, Zhenis avenue, 62, 010000, Astana, Kazakhstan

L.A. Lider

Seifullin Kazakh Agrotechnical Research University, Zhenis avenue, 62, 010000, Astana, Kazakhstan.
Scientific Center for Biological Research, 1/134 Seifullin str., 010000, Astana, Kazakhstan.

A.K. Bulashev

S. Seifullin Kazakh Agrotechnical Research University, Zhenis avenue, 62, 010000, Astana, Kazakhstan

V.S. Kiyan

National Center for Biotechnology, 13/5, Kurgalzhyn road, 010000, Astana, Kazakhstan.
Seifullin Kazakh Agrotechnical Research University, Zhenis avenue, 62, 010000, Astana, Kazakhstan.
Scientific Center for Biological Research, 1/134 Seifullin str., 010000, Astana, Kazakhstan.

Abstract

In recent years, the consumption of imported fish has increased significantly in Kazakhstan, especially representatives of the cod family, which are characterized by a high level of parasitic invasion. Anisakidosis is a parasitic disease caused by nematodes of the Anisakidae family. The main symptoms of this disease are disorders of the gastrointestinal tract and allergic reactions. Humans are random hosts, consuming raw or undercooked fish and seafood. Until recently, it was believed that heat-treated fish was not dangerous, but recent studies show a high degree of allergy to anisakid antigens, which remain active after heat treatment. In addition, existing data indicate differences in the level of allergenicity between different species of nematodes in the family. In this regard, the species identification of anisakids is relevant for taxonomy, monitoring of distribution and minimizing potential risks to humans. Therefore, the purpose of this study is to select marker regions of genes for the identification of nematodes in cod family fish. Of the four types of primers, NC13/NC2 and NC5/NC2 are the most specific and optimal for amplifying the 5.8S and ITS-2 regions of rDNA. The nucleotide sequences obtained by us were identified as nematodes of the species Anisakis simplex and Hysterothylacium aduncum.

Keywords

nematodes, Anisakis simplex, Hysterothylacium aduncum, sequencing, fish parasites

Article Details

References

Hemmingsen W., MacKenzie K. The parasite fauna of the Atlantic cod, Gadus morhua L. // Advances in Marine Biology. – 2001. – Vol. 40. – P. 1–80. Crossref.

Wąsikowska B., Sobecka E., Bielat I., Legierko M., Więcaszek B. A novel method for predicting anisakid nematode infection of Atlantic cod using rough set theory // Journal of Food Protection. – 2018. – Vol. 81(3). – P. 502–508. Crossref.

Quaresma M.A.G., Pereira G. et al. Evaluating dried salted cod amino acid signature for nutritional quality assessment and discriminant analysis // Frontiers in Nutrition. – 2023. – Vol. 10. – P. 1144713. Crossref.

Smith J.D. Taxonomy of Raphidascaris spp. (Nematoda, Anisakidae) of fishes, with a redescription of R. acus (Bloch, 1772) // Canadian Journal of Zoology. – 1984. – Vol. 62(4). – P. 685–694. Crossref.

Pawlak J. In situ evidence of the role of Crangon crangon in infection of cod Gadus morhua with nematode parasite Hysterothylacium aduncum in the Baltic Sea // Parasitology. – 2021. – Vol. 148(13). – P. 1691–1696. Crossref.

Cavallero S., El Sherif R.A. et al. Occurrence of Anisakis and Hysterothylacium nematodes in Atlantic chub mackerels from Libyan coasts // Helminthologia. – 2019. – Vol. 56(4). – P. 347–352. Crossref.

Adroher F.J., Morales-Yuste M. et al. Anisakiasis and Anisakidae // Pathogens. – 2024. – Vol. 13(2). – Article ID 148. Crossref.

Betancourth P., Gómez J. et al. Anisakidae parasites in frozen fish fillets intended for human consumption // Biomedica. – 2022. – Vol. 42(4). – P. 591–601. Crossref.

Castellanos J.A., Tangua A.R. et al. Anisakidae nematodes isolated from the flathead grey mullet fish (Mugil cephalus) of Buenaventura, Colombia // International Journal for Parasitology: Parasites and Wildlife. – 2017. – Vol. 6(3). – P. 265–270. Crossref.

Ramanan P., Blumberg A.K. et al. Parametrial anisakidosis // Journal of Clinical Microbiology. – 2013. – Vol. 51(10). – P. 3430–3434. Crossref.

Choi S.J., Lee J.C. et al. The clinical characteristics of Anisakis allergy in Korea // Korean Journal of Internal Medicine. – 2009. – Vol. 24(2). – P. 160–163. Crossref.

Shamsi S., Barton D.P. A critical review of anisakidosis cases occurring globally // Parasitology Research. – 2023. – Vol. 122(8). – P. 1733–1745. Crossref.

Ludovisi A., Di Felice G. et al. Allergenic activity of Pseudoterranova decipiens (Nematoda: Anisakidae) in BALB/c mice // Parasites & Vectors. – 2017. – Vol. 10(1). – P. 290. Crossref.

Arcos S.C., Ciordia S. et al. Proteomic profiling and characterization of differential allergens in the nematodes Anisakis simplex sensu stricto and A. pegreffii // Proteomics. – 2014. – Vol. 14. – P. 1547–1568. Crossref.

Aibinu I.E., Smooker P.M., Lopata A.L. Anisakis nematodes in fish and shellfish – from infection to allergies // International Journal for Parasitology: Parasites and Wildlife. – 2019. – Vol. 9. – P. 384–393. Crossref.

Shamsi S. The occurrence of Anisakis spp. in Australian waters: past, present, and future trends // Parasitology Research. – 2021. – Vol. 120(9). – P. 3007–3033. Crossref.

Mattiucci S., Nascetti G. Advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host-parasite co-evolutionary processes // Advances in Parasitology. – 2008. – Vol. 66. – P. 47–148. Crossref.

Shamsi S., Suthar J. Occurrence of Terranova larval types (Nematoda: Anisakidae) in Australian marine fish with comments on their specific identities // Peer J. – 2016. – Vol. 4. – P. e1722. Crossref.

Di Azevedo M.I.N., Carvalho V.L., Iñiguez A.M. Integrative taxonomy of anisakid nematodes in stranded cetaceans from Brazilian waters: An update on parasite’s hosts and geographical records // Parasitology Research. – 2017. – Vol. 116. – P. 3105–3116. Crossref.

Ángeles-Hernández J.C., Gómez-de Anda F.R. et al. Genera and species of the Anisakidae family and their geographical distribution // Animals (Basel). – 2020. – Vol. 10(12). – P. 2374. Crossref.

Mercken E., Van Damme I. et al. Presence of Anisakidae in commercial fish species imported into the Belgian food markets: A systematic review and meta-analyses // International Journal of Food Microbiology. – 2020. – Vol. 318. – P. 108456. Crossref.

Kim C.H., Chung B.S. et al. A case report on human infection with Anisakis sp. in Korea // Korean Journal of Parasitology. – 1971. – Vol. 9(1). – P. 39–43. Crossref.

Chai J.-Y., Murrell K.D., Lymbery A.J. Fish-borne parasitic zoonoses: status and issues // International Journal for Parasitology. – 2005. – Vol. 35(11-12). – P. 1233–1254. Crossref.

Suzuki J., Murata R., Kodo Y. Current status of anisakiasis and Anisakis larvae in Tokyo, Japan // Food Safety. – 2021. – Vol. 9(4). – P. 89–100. Crossref.

Pozio E. Integrating animal health surveillance and food safety: the example of Anisakis // Revue Scientifique et Technique. – 2013. – Vol. 32. – P. 487–496. Crossref.

Navone G.T., Sardella N.H., Timi J.T. Larvae and adults of Hysterothylacium aduncum (Nematoda: Anisakidae) in fishes and crustaceans in the southwest Atlantic // Parasite. – 1998. – Vol. 5(2). – P. 127–136. Crossref.

Shamsi S., Poupa A., Justine J.L. Characterisation of ascaridoid larvae from marine fish off New Caledonia, with description of new Hysterothylacium larval types XIII and XIV // Parasitology International. – 2015. – Vol. 64(5). – P. 397–404. Crossref.

Yagi K., Nagasawa K. et al. Female worm Hysterothylacium aduncum excreted from human: a case report // Japanese Journal of Parasitology. – 1996. – Vol. 45. – P. 12–23.

González-Amores Y., Clavijo-Frutos E. et al. Direct parasitological diagnosis of infection with Hysterothylacium aduncum in a patient with epigastralgia // Revista Española de Enfermedades Digestivas. – 2015. – Vol. 107(11). – P. 699–700.

Jacobs D.E., Zhu X., Gasser R.B., Chilton N.B. PCR-based methods for identification of potentially zoonotic ascaridoid parasites of the dog, fox and cat // Acta Tropica. – 1997. – Vol. 68(2). – P. 0–200. Crossref.

Zhu X., Gasser R.B., Podolska M., Chilton N.B. Characterisation of anisakid nematodes with zoonotic potential by nuclear ribosomal DNA sequences // International Journal for Parasitology. – 1998. – Vol. 28(12). – P. 1911–1921. Crossref.

Macheriotou L., Guilini K. et al. Metabarcoding free-living marine nematodes using curated 18S and CO1 reference sequence databases for species-level taxonomic assignments // Ecology and Evolution. – 2019. – Vol. 9(3). – P. 1211–1226. Crossref.

Bowles J., Blair D., McManus D.P. Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing // Molecular and Biochemical Parasitology. – 1992. – Vol. 54(2). – P. 165–173. Crossref.

Tamura K., Stecher G., Kumar S. MEGA11: Molecular evolutionary genetics analysis version 11 // Molecular Biology and Evolution. – 2021. – Vol. 38(7). – P. 3022–3027. Crossref.

Kakie strany kormyat kazakhstantsev ryboy i ikroy. [Infografika] / LS – INFORMATSIONNOE AGENTSTVO // URL. – 2024. [Accessed 30.10.2024].