MULTIOMICS TECHNOLOGIES IN THE STUDY OF THE PATHOGENESIS OF BRAIN ARTERIOVENOUS MALFORMATIONS
Main Article Content
Authors
D.A. Zhamshitova
LLP «National Center for Biotechnology», Korgalzhyn highway 13/5, Astana, Kazakhstan, 010000
Abstract
Brain arteriovenous malformations (bAVMs) are abnormal vascular structures in which arteries directly connect to veins, bypassing the capillary network. Studying the pathogenesis of bAVMs is important for understanding the mechanisms of their occurrence and development, allowing the development of more effective diagnosis, treatment, and prevention methods. This review aims to collect and analyze data about genes, proteins, and metabolites that affect the pathogenesis of brain AVMs obtained using multi-omics technologies. The use of whole-exome sequencing, RNA-sequencing, TMT-MS, iTRAQ, UHPLC-MS allowed us to identify key genetic mutations, signaling pathways and mechanisms associated with the development of bAVMs. They include the KRAS gene in endothelial cells and the MAPK, Wnt and TGF-β pathways. The discovery of differentially expressed proteins and metabolites such as hydroxyproline, dihydrojasmonic acid, L-2-amino-4-methylenepentanedioic acid, piperettine, 20-hydroxy-PGF2a, 2,2,4,4-tetramethyl-6-(1-oxobutyl)-1,3,5-cyclohexanetrione, DL-tryptophan, 9-oxoODE, alpha-linolenic acid also offers new biomarkers for diagnosis and treatment. The data obtained through multi-omics approaches are critical for developing personalized treatment strategies and improving clinical management, with the ultimate goal of reducing morbidity and mortality associated with brain AVMs.
Keywords
arteriovenous malformations, sporadic, sequencing, mass spectrometry, genomics, transcriptomics, metabolomics, genes, metabolites
Article Details
References
Tasiou A. et al. Arteriovenous Malformations: Congenital or Acquired Lesions? // World Neurosurgery. 2020. - Vol. 134.- P. e799–e807.Crossref
Bharatha A. et al. Brain Arteriovenous Malformation Multiplicity Predicts the Diagnosis of Hereditary Hemorrhagic Telangiectasia // Stroke. - 2012. - Vol. 43, № 1.- P. 72–78.Crossref
Spetzler R.F., Martin N.A. A proposed grading system for arteriovenous malformations // Journal of Neurosurgery. - 1986. - Vol. 65, № 4.- P. 476–483. Crossref
McCormick W.F. The Pathology of Vascular (“Arteriovenous”) Malformations // Journal of Neurosurgery. - 1966. - Vol. 24, № 4.- P. 807–816. Crossref
Yang W. et al. The Natural History of Hemorrhage in Brain Arteriovenous Malformations—Poisson Regression Analysis of 1066 Patients in a Single Institution // Neurosurgery. - 2023. Crossref.
Nikolaev S.I. et al. Somatic Activating KRAS Mutations in Arteriovenous Malformations of the Brain // New England Journal of Medicine. - 2018. - Vol. 378, № 3.- P. 250–261.Crossref
Gao S. et al. Somatic mosaicism in the MAPK pathway in sporadic brain arteriovenous malformation and association with phenotype // Journal of Neurosurgery. - 2022. - Vol. 136, № 1.- P. 148–155.Crossref
Oka M. et al. KRAS G12D or G12V Mutation in Human Brain Arteriovenous Malformations // World Neurosurgery. - 2019. - Vol. 126.- P. e1365–e1373.Crossref
Mukhtarova K. et al. Whole-Exome Sequencing Reveals Pathogenic SIRT1 Variant in Brain Arteriovenous Malformation: A Case Report // Genes. - 2022. - Vol. 13, № 10.- P. 1689.Crossref
Walcott B.P. et al. Identification of a rare BMP pathway mutation in a non-syndromic human brain arteriovenous malformation via exome sequencing // Human Genome Variation. - 2018. - Vol. 5, № 1.Crossref
Tsukamoto S. et al. Smad9 is a new type of transcriptional regulator in bone morphogenetic protein signaling // Scientific Reports. - 2014. - Vol. 4, № 1.doi: 10.1038/SREP07596
Scimone C. et al. High-Throughput Sequencing to Detect Novel Likely Gene-Disrupting Variants in Pathogenesis of Sporadic Brain Arteriovenous Malformations // Frontiers in Genetics. - 2020. - Vol. 11.doi: 10.3389/fgene.2020.00146
Winkler E. et al. Endoluminal Biopsy for Molecular Profiling of Human Brain Vascular Malformations // Neurology. - 2022. - Vol. 98, № 16.Crossref
Kang J.Y. et al. Systematic Multiomic Analysis of PKHD1L1 Gene Expression and Its Role as a Predicting Biomarker for Immune Cell Infiltration in Skin Cutaneous Melanoma and Lung Adenocarcinoma // International Journal of Molecular Sciences. - 2023. - Vol. 25, № 1.- P. 359.Crossref
Li H. et al. RNA sequencing analysis between ruptured and un-ruptured brain AVM // Chinese Neurosurgical Journal. - 2022. - Vol. 8, № 1.Crossref
Hauer A.J. et al. RNA-Sequencing Highlights Inflammation and Impaired Integrity of the Vascular Wall in Brain Arteriovenous Malformations // Stroke. - 2020. - Vol. 51, № 1.- P. 268–274.Crossref
Huo R. et al. RNA Sequencing Reveals the Activation of Wnt Signaling in Low Flow Rate Brain Arteriovenous Malformations // Journal of the American Heart Association. - 2019. - Vol. 8, № 12.Crossref
Wang L. et al. Wilms’ tumour 1‐associating protein inhibits endothelial cell angiogenesis by m6A‐dependent epigenetic silencing of desmoplakin in brain arteriovenous malformation // Journal of Cellular and Molecular Medicine. - 2020. - Vol. 24, № 9.- P. 4981–4991.Crossref
De Souza N., Picotti P. Mass spectrometry analysis of the structural proteome // Current Opinion in Structural Biology. - 2020. - Vol. 60.- P. 57–65.doi: 10.1016/J.SBI.2019.10.006
Hovey O. et al. Quantitative Proteomics Approach to Characterize Cellular Reprogramming. - 2022.Crossref, O.; Zhong, S.; Kaneko, T.; Li, S.; Ezra, S. Quantitative Proteomics Approach to Characterize Cellular Reprogramming. Preprints 2022, 2022110096. Crossref
Wang X. et al. Dysregulation of cell–cell interactions in brain arteriovenous malformations: A quantitative proteomic study // PROTEOMICS - CLINICAL APPLICATIONS. - 2017. - Vol. 11, № 5–6.Crossref
Wang Q. et al. Compound heterozygous variants in MYH11 underlie autosomal recessive megacystis-microcolon-intestinal hypoperistalsis syndrome in a Chinese family // Journal of Human Genetics. - 2019. - Vol. 64, № 11.- P. 1067–1073.doi: 10.1038/S10038-019-0651-Z
Krendel M., Mooseker M.S. Myosins: Tails (and Heads) of Functional Diversity // Physiology. - 2005. - Vol. 20, № 4.- P. 239–251.Crossref
Dawson D.W. et al. CD36 Mediates the In Vitro Inhibitory Effects of Thrombospondin-1 on Endothelial Cells // The Journal of Cell Biology. 1997. - Vol. 138, № 3.- P. 707–717.Crossref
Isenberg J.S., Roberts D.D. THBS1 (thrombospondin-1) // Atlas of Genetics and Cytogenetics in Oncology and Haematology. - 2020. - № 8.Crossref
Li M. et al. Metabolic Disorder of Extracellular Matrix Mediated by Decorin Upregulation Is Associated With Brain Arteriovenous Malformation Diffuseness // Frontiers in Aging Neuroscience. - 2020. - Vol. 12.doi: 10.3389/fnagi.2020.584839
Diffuse arteriovenous malformations: a clinical, radiological, and pathological description [Electronic resource] // PubMed. - 1992. URL: URL URL.
Vélez-Bermúdez I.C. et al. Isobaric Tag for Relative and Absolute Quantitation (iTRAQ)-Based Protein Profiling in Plants // Methods in Molecular Biology. - 2016.- P. 213–221.Crossref
Anbarasen L. et al. Expression of osteopontin, matrix metalloproteinase-2 and -9 proteins in vascular instability in brain arteriovenous malformation // PeerJ. - 2019. - Vol. 7.- P. e7058.Crossref
Kanayasu-Toyoda T. et al. Angiogenic Role of MMP-2/9 Expressed on the Cell Surface of Early Endothelial Progenitor Cells/Myeloid Angiogenic Cells // Journal of Cellular Physiology. - 2015. - Vol. 230, № 11.- P. 2763–2775.doi: 10.1002/JCP.25002
Keränen S. et al. Cyclo-oxygenase 2, a putative mediator of vessel remodeling, is expressed in the brain AVM vessels and associates with inflammation // Acta Neurochirurgica. - 2021. - Vol. 163, № 9.- P. 2503–2514.doi:10.1007/s00701-021-04895-z
Lee J., Banerjee D. Metabolomics and the Microbiome as Biomarkers in Sepsis // Critical Care Clinics. - 2020. - Vol. 36, № 1.- P. 105–113.Crossref
Liu X., Locasale J.W. Metabolomics: A Primer // Trends in Biochemical Sciences. - 2017. - Vol. 42, № 4.- P. 274–284.DOI: 10.1016/j.tibs.2017.01.004
Fan X. et al. Untargeted plasma metabolome identifies biomarkers in patients with extracranial arteriovenous malformations // Frontiers in Physiology. - 2023. - Vol. 14.doi: 10.3389/fphys.2023.1207390
Hu S., He W., Wu G. Hydroxyproline in animal metabolism, nutrition, and cell signaling // Amino Acids. - 2021. - Vol. 54, № 4.- P. 513–528.doi: 10.1007/S00726-021-03056-X
Wu Z. et al. Metabolism, Nutrition, and Redox Signaling of Hydroxyproline // Antioxidants and Redox Signaling. - 2019. - Vol. 30, № 4.- P. 674–682.doi: 10.1089/ARS.2017.7338
Arinze N.V. et al. Tryptophan metabolites suppress the Wnt pathway and promote adverse limb events in chronic kidney disease // Journal of Clinical Investigation. - 2022. - Vol. 132, № 1.doi: 10.1172/JCI142260
Zhao B. et al. 9-Oxo-(10E,12E)-octadecadienoic acid, a cytotoxic fatty acid ketodiene isolated from eggplant calyx, induces apoptosis in human ovarian cancer (HRA) cells // Journal of Natural Medicines. - 2015. - Vol. 69, № 3.- P. 296–302.doi: 10.1007/S11418-015-0892-X
Feng S. et al. Alpha-linolenic acid inhibits hepatocellular carcinoma cell growth through Farnesoid X receptor/β-catenin signaling pathway // Nutrition & Metabolism. - 2022. - Vol. 19, № 1.doi: 10.1186/s12986-022-00693-1
Wasternack C. Jasmonates: An Update on Biosynthesis, Signal Transduction and Action in Plant Stress Response, Growth and Development // Annals of Botany. - 2007. - Vol. 100, № 4.- P. 681–697.doi:10.1093/aob/mcm079
Blackwell K.A., Raisz L.G., Pilbeam C.C. Prostaglandins in bone: bad cop, good cop? // Trends in Endocrinology and Metabolism. - 2010. - Vol. 21, № 5.- P. 294–301.doi:10.1016/j.tem.2009.12.004