THE COMBINED EFFECT OF TBSV P19 MUTANTS AND HEAVY METALS ON ANTIOXIDANT ENZYME ACTIVITY THE COMBINED EFFECT OF TBSV P19 MUTANTS AND HEAVY METALS ON ANTIOXIDANT ENZYME ACTIVITY

Main Article Content

Authors

A. Akbassova

L.N. Gumilyov Eurasian National University, 2, Satpayev str., Astana, 010000, Kazakhstan

M. Beisekova

L.N. Gumilyov Eurasian National University, 2, Satpayev str., Astana, 010000, Kazakhstan

A. Tassanbiyeva

L.N. Gumilyov Eurasian National University, 2, Satpayev str., Astana, 010000, Kazakhstan

D. Zhamshitova

L.N. Gumilyov Eurasian National University, 2, Satpayev str., Astana, 010000, Kazakhstan

A. Kurmanbayeva

L.N. Gumilyov Eurasian National University, 2, Satpayev str., Astana, 010000, Kazakhstan

S. Zhangazin

L.N. Gumilyov Eurasian National University, 2, Satpayev str., Astana, 010000, Kazakhstan

N. Moldakimova

L.N. Gumilyov Eurasian National University, 2, Satpayev str., Astana, 010000, Kazakhstan

A. Shalabayeva

L.N. Gumilyov Eurasian National University, 2, Satpayev str., Astana, 010000, Kazakhstan

Zh. Masalimov

L.N. Gumilyov Eurasian National University, 2, Satpayev str., Astana, 010000, Kazakhstan

A. Akbassova

L.N. Gumilyov Eurasian National University, 2, Satpayev str., Astana, 010000, Kazakhstan

Abstract

Crops of food value are often exposed to viral pathogens. Therefore, crops can noticeably decrease or die completely. For example, in 2021, the tomato brown wrinkle virus was detected in Kazakhstan, the main hosts of which are tomatoes and peppers. At the same time, in farms where the pathogen was detected, yield loss ranged from 30 to 70%. Therefore, it is important to develop methods aimed at increasing plant stress tolerance to viral infection. The scientific novelty of this manuscript is that previously the simultaneous effect of viral pathogens and heavy metals on plants has not been studied. Antioxidant enzymes play an important role in regulating the concentration of reactive oxygen species in plant cells. The enzyme catalase catalyzes the conversion of hydrogen peroxide into water and molecular oxygen, thereby neutralizing superoxide radicals. Thus, antioxidant enzymes prevent tissue damage and necrosis. Molybdenum enzymes can produce reactive oxygen species when exposed to adverse conditions, such as pathogen infestation or drought. Molybdenum is an integral part of the Moco cofactor within molybdoenzymes, but tungsten has the ability to substitute for molybdenum, resulting in a reversible loss of enzyme function. Consequently, tungsten acts as a stressor for plants. Inoculation of plants with tomato bush stunt virus of the wild type leads to their death. At the same time, when infected with TBSV 157, RMJ1 and RMJ2 mutants, the plants recovered after some time. Plants are expected to be more viable when the subject is exposed to heavy metal solutions and inoculated with viruses.

Keywords

TBSV, heavy metals, molybdenum, tungsten, catalase, molybdoenzymes

Article Details

References

Yamamura Y., Scholthof H. B. Tomato bushy stunt virus: a resilient model system to study virus-plant interactions // Molecular Plant Pathology – 2005. – Vol.6, №5. - P.491–502.

Stork J., Kovalev N., Sasvari Z., Nagy P. RNA chaperone activity of the tombusviral p33 replication protein facilitates initiation of RNA synthesis by the viral RdRp in vitro // Virology. – 2011. – P.338–347.

Akbassova A., Yermukhambetova R., Mukiyanova G., Tleukulova Zh., Kassenova S., Dildabek A., Ilyasova B., Stamgaliyeva Z., Omarov R. TBSV P19 protein as a trigger of salicylic acid-induced resistance of Solanum lycopersicum - 2018.

Ильясова Б., Жангазин С., Мадиров А., Акбасова А., Дилдабек А., Тлеукулова Ж., Стамгалиева З., Омаров Р. Свойства и функции вирусных белков и белка-супрессора РНК-интерференции Р19 вируса TBSV в активации иммунных механизмов растений против вирусной инфекции // Вестник ЕНУ имени Л.Н. Гумилева. Серия биологические науки. – 2020.

Omarov R., Sparks K., Smith L., Zindovic J., Scholthof H. Biological Relevance of a Stable Biochemical Interaction between the Tombusvirus-Encoded P19 and Short Interfering RNAs // Journal of Virology. – 2006. - V.80, №6. – P.3000–3008.

Shamekova M., Mendoza M., Hsieh Y.-C., Lindbo J., Omarov R., Scholthof H. Tombusvirus-based vector systems to permit over-expression of genes or that serve as sensors of antiviral RNA silencing in plants // Virology – 2014. – P.452-453.

Iksat N., Kulzhigit A., Issabay M., Zharylkassyn G., Omarov R. The effect of complete or partial inactivation of p19 and p41 proteins with nuclease activity on the level of viral infection of TBSV. - 2021.

Manuel T., Alejandro C., Aurora G., Emilio F., Ángel L. Molybdenum metabolism in plants // Metallomics. – 2013. – V.5, №9. – P.1191–1203

Hille R., Nishino T., Bittner F. Molybdenum enzymes in higher organisms // Coord. Chem. Rev. – 2011.

Hanzelmann P., Hernandez H., Menzel C., GarciaSerres R., Huynh B., Johnson M., Mendel R. Characterization of MOCS1A, an oxygen-sensitive iron- sulfur protein involved in human molybdenum cofactor biosynthesis // J. Biol. Chem. – 2004.

Hanzelmann P., Schindelin H. Binding of 5'-GTP to the C-terminal FeS cluster of the radical S-adenosylmethionine enzyme MoaA provides insights into its mechanism // Proc. Natl. Acad. Sci. U. S. A. – 2006.

Teschner J., Lachmann N., Schulze J., Geisler M., Selbach K., Santamaria- Araujo J., Balk J., Mendel R, Bittner F. A Novel Role for Arabidopsis Mitochondrial ABC Transporter ATM3 in Molybdenum Cofactor Biosynthesis // The Plant Cell. – 2010. – P.468–480

Wuebbens M., Rajagopalan K. Mechanistic and mutational studies of Escherichia coli molybdopterin synthase clarify the final step of molybdopterin biosynthesis // The Journal of Biological Chemistry. – 2003. – P.14523-14532.

Matthies A., Rajagopalan K. V., Mendel Ralf R., Leimkuhler S. Evidence for the physiological role of a rhodanese-like protein for the biosynthesis of the molybdenum cofactor in humans // PNAS. – 2004. V.101, №16. – P.5946–5951.

Kuper J., Llamas A., Hecht H., Mendel R., Schwarz G. Structure of the molybdopterin-bound Cnx1G domain links molybdenum and copper metabolism // Nature. – 2004. – P.803-6.

Kuper J. The active site of the molybdenum cofactor biosynthetic protein domain Cnx1G // Archives of Biochemistry and Biophysics. – 2003. – P.36–46.

Llamas A., Otte T., Multhaup G., Mendel R., Schwarz G. The Mechanism of Nucleotide-assisted Molybdenum Insertion into Molybdopterin: A novel route toward metal cofactor assembly // J. Biol. Chem. – 2007. – P.18343-18350.

Llamas A., Otte T., Multhaup G., Mendel RR., Schwarz G. The Mechanism of nucleotide-assisted molybdenum insertion into molybdopterin. A novel route toward metal cofactor assembly // J Biol Chem. – 2006. – P.18343-50.

Muhammad S., Parashuram B., Xue-cheng S., Muhammad I. Molybdenum as an Essential Element for Crops: An Overview // Biomed J Sci and Tech Res. - 2020. – V.24, №5 – P. 18535-18547

Bittner F., Mendel R-R. Cell biology of molybdenum. Cell Biology of Metals and Nutrients // Plant Cell Monographs. - 2010. - P.119-143.

Nguyen J. Plant xanthine dehydrogenase: its distribution, properties and function // Physiol. Vegetab. - 1986. - P.263-281.

Hesberg C., Hänsch R., Mendel R., Bittner F. Tandem orientation of duplicated xanthine dehydrogenase genes from Arabidopsis thaliana: differential gene expression and enzyme activities // J. Biol. Chem. – 2004. – P.13547–13554.

Tejada-Jimenez M., Llamas A., Galván A., Fernández E. Role of Nitrate Reductase in NO Production in Photosynthetic Eukaryotes // Plants. - 2019.

Wilbur H. Nitrate reductase structure, function and regulation: Bridging the Gap between Biochemistry and Physiology // Plants. – 2019.

Kishorekumar R., Bulle M., Wany A., Gupta K. J. An Overview of Important Enzymes Involved in Nitrogen Assimilation of Plants // Methods in Molecular Biology. - 2019.

Vranova E., Inze D., Breusegem F. Signal transduction during oxidative stress // J. Exp. Bot. – 2002. – P. 1227–1236.

Mehla N., Sindhi V., Josula D., Bisht P., Wani S. H. An Introduction to Antioxidants and Their Roles in Plant Stress Tolerance. Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation Under Abiotic Stress - 2017.

Meitha K., Pramesti Y., Suhandono S. Reactive Oxygen Species and Antioxidants in Postharvest Vegetables and Fruits // International Journal of Food Science. – 2020. – P.1-11.

Anjum N. A., Sharma P., Gill S. S., Hasanuzzaman M., Khan E. A., Kachhap K., Tuteja N. Catalase and ascorbate peroxidase—representative H2O2- detoxifying heme enzymes in plants // Environmental Science and Pollution Research. – 2016.

Amna M., Guillaume Q., Sejir C., Sandy V., Frank Van Breusegem, Graham N. Catalase function in plants: a focus on Arabidopsis mutants as stress- mimic models // Journal of Experimental Botany. – 2010. – V.61. - P.4197–4220.

Willekens H., Villarroel R., Van Montagu M., Inze D., Van Camp W. Molecular identification of catalases from Nicotiana plumbaginifolia // FEBS Lett. – 1994.

Jouili H., Bouazizi H., El Ferjani E. Plant peroxidases: biomarkers of metallic stress // Acta Physiologiae Plantarum. – 2011. – V.33. – P.2075–2082.

Susumu H., Katsutomo S., Hiroyuki I., Yuko O., Hirokazu M. A Large Family of Class III Plant Peroxidases // Plant and Cell Physiology. – 2001. – V. 42. – P.462–468.

Shigeru S., Takahiro I., Masahiro T., Yoshiko M., Toru T., Yukinori Y., Kazuya Y. Regulation and function of ascorbate peroxidase isoenzymes // Journal of Experimental Botany. – 2002. – V. 53 – P.1305–1319.