Main Article Content


T. Li

Institute for Plants Biology and Biotechnology, Almaty, Kazakhstan

S. Didorenko

Казахский Kazakh Research Institute of Arable Farming and Plant Production, Almalybalyk, Kazakhstan

U. Orazbayeva

Institute for Plants Biology and Biotechnology, Almaty, Kazakhstan

Z. Spankulova

Institute for Plants Biology and Biotechnology, Almaty, Kazakhstan

A. Tashkenova

Institute for Plants Biology and Biotechnology, Almaty, Kazakhstan

Z. Birimzhanova

Al-Farabi Kazakh National University, Almaty, Kazakhstan


Soybean is the most important legumes in the world and an important source of protein, oil, macro-and micronutrients. Despite the increase in world demand for cultural soya as a source of vegetable protein and oil, the current losses in the production of soybean comprise over one fifth crop worldwide. Аbiotic stress factors are responsible for most of these losses of soybean yield compared with the maximum. In this regard, the study of drought tolerance and productivity of major agricultural crops, such as soybean, is a priority for Kazakhstan today.

Our previous study of the antioxidant enzymes had revealed that the genotypes of wheat, developing a higher enzyme activity under stress, are proved to be more resistant to drought stress.

We have studied the cultivated soybean Glycine max L. of the world collection,  according to the preliminary data having traits of drought resistance: vr.Ustya (Ukraine), K589109 (Russia), K583583 HMAS 84 (USA) and related to early maturing group with vegetation period of 85-95 days. As the standard was used a variety of domestic breeding - Almaty.

In the present research we applied the methods - determination of relative water content (RWC), determination of proline, detection of changes in the activity of antioxidant enzymes peroxidase (POD) and superoxide dismutase (SOD), phenological observations and analysis of the main elements of yield structure of contrasting soybean varieties.

Development of a method for early diagnosis of drought resistance in legume crops, based on the screening of physiological and biochemical indicators of stress tolerance, is essential for accelerated breeding of soybean genotypes.


biochemical indices of drought resistance, enzymes-antioxidants, correlative links

Article Details


Fehr W.R., Caviness C.E., Burmood O.T. and Pennington J.S. Stage of development description for soybeans Glycine max(L.) // Merril. Crop Sci. – Vol.11. – P. 929-931.

Schonfeld M.A., Johnson B.F., Mornhiweg D.W. Water relations in winter wheat as drought resistance indicator // Crop Sci. – 1988. - Vol. 28. - P. 526-531.

Bates L.S., Waldren R.P., Teare I.D. Rapid Determination of Free Proline for Water-Stress Studies // Plant Soil. - 1973. - Vol. 39. - P. 205–207.

Лебедева О.В., Угарова Н.Н., Березин И.В. Кинетическое изучение реакции окисления о-дианизидина Н2О2 в присутствии пероксидазы хрена / Биохимия. - 1977. - Т.42.- С. 1372-1379.

Beauchamp C., Fridovich J. Superoxide Dismutase: Improved Assays and an Assay Applicable to Acrylamide Gels // Anal. Biochem. - 1971. - Vol. 44. - P. 276-287.

Корсаков Н.И., Макашева Р.Х., Адамова О.П. Методика изучения коллекции зернобобовых культур. – Л.: ВИР, 1968. – 175 с.

T. Lee, H.J. Bohnert, V.A. Poroyko. Transcript and Metabolic Changes in Carbon and Nitrogen Allocation Pathways in Wheat under Drought. // Proceedings of Conference. Eucarpia.Lleida (Spain). - 2006. - P. 221-225.

T. Lee, H.J. Bohnert, V.A. Poroyko. Changes in activity of key enzymes of nitrogen and carbon assimilation under drought // ASPB meeting.Chicago. USA. – 2007.

Shao H.B., Chu L.Y., Zhao C.X., Guo Q.J., Liu X.A., Ribaut J.M. Plant gene regulatory network system under abiotic stress // Review article. Acata Biologica Szegediensis. - 2006. Vol.50, №1-2. – Р. 1-9.

M. Almeselmani, P.S. Deshmukh, R.K. Sairam, S.R. Kushwaha and T.P. Singh. Protective role of antioxidant enzymes under high temperature stress // Plant Sci. – 2006. – Vol.171, №3. – Р. 382-388.

Suzuki N., Mittler R. Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction // Physiol. Plant. – 2006. – Vol. 126. – P. 45-51.

Карпец Ю.В. О возможных механизмах индуцирования теплоустойчивости проростков пшеницы мягкой и сосны обыкновенной кратковременным действием высокой температуры // Вісн. Харків. націон.аграрн. ун-ту. Серия «Біологія». – 2007. – №3 (12). – С. 63-70.

Карпец Ю.В., Колупаев Ю.Е.Ответ растений на гипертермию. Молекулярно-клеточные аспекты // Вісн. Харків. націон.аграрн. ун-ту. Серия «Біологія». - 2009. - №1(16). - С. 19-38.

Bayoumi T., Eid M., Metwali E. Application of physiological and biochemical indices as a screening technique for drought tolerance in wheat genotypes // Afr. J. Biotechnology. - 2008. - Vol.7, №14. - Р. 2341-2352.

Wang W., Vinocur B., Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance // Planta. - 2003. - Vol.218. – P.1-14.

Blum А., Towards standard assays of drought resistance in crop plants. Workshop on molecular approaches for the genetic improvement of cereals for stable production in water-limited environments. CYMMYT, Mexico. - 2008. – P. 29-35.

Shao H.B., Chu L.Y., Wu G., Zhang J.H., Lu Z.H., Hu Y.C. Changes of some anti-oxidative physiological indices under soil water deficits among 10 wheat genotypes at tillering stage // Colloids Surf B Biointerfaces. – 2007. - №54(2). – Р.1 43-149.

Zhang M.J., Tan F.J., Zhang Q.J., Yang Y.J. Physiological indices and selection of methods on rapid identification for sweet potato drought resistance // Agricultural sciences in China. – 2005. - №4 (11). - P. 826-832.