Main Article Content


M.Zh. Kaliyeva

National center for biotechnology, 13/1 Valikhanov St., Astana, 010000, Kazakhstan

A.Zh. Baltabekova

National center for biotechnology, 13/1 Valikhanov St., Astana, 010000, Kazakhstan

A.V. Shustov

National center for biotechnology, 13/1 Valikhanov St., Astana, 010000, Kazakhstan


The epizootic situation with foot-and-mouth disease (FMD) in Kazakhstan has been unfavorable for years. Mandatory vaccination of farm animals is maintained in the buffer zone of Kazakhstan to prevent circulation of the disease from hyperendemic areas of South and Central Asia. Traditionally used FMD vaccines are based on inactivated virus antigen. Traditional vaccines are becoming obsolete in light of novel requirements of safety and performance. Recombinant FMD vaccine is a subject of intense research worldwide because of safety, high efficiency and compatibility with the DIVA-diagnostic tests. This study describes development of recombinant antigens of FMD virus of serotypes O, A, Asia-1. The resulting recombinant antigens present themselves as spherical particles (virus-like particles, VLPs) formed by a regular spatial assembly of a carrier protein (HBcAg). The VLPs present immunodominant regions of the FMD virion proteins VP1, VP2, VP3. Production of antigen in the form of VLPs significantly increases the immunogenicity. Described FMD antigens belong to a class of epitope antigens. The immunogenic particles are produced in a bacterial expression system and purified to homogeneity using density gradient ultracentrifugation and affinity chromatography. Immunization of laboratory animals with the recombinant antigens was shown to induce antibodies which react with VP1 protein of FMD virion. The described technology for producing of epitope antigens in the form of VLPs can be used in development of a candidate vaccine.


FMD, virus antigen, a recombinant protein, vaccine, virus-like particle

Article Details


Sytnik I.I. Epizootologicheskiy monitoring yashchura s ispolzovaniem GIS – technologiy:avtoref. kand. vet. nauk [Epizootologic monitoring of FMD using GIS – technologies. Candidate of vet.sci. thesis.]. Astana, 2010, 28p.

Sobrino F., Saiz M., Jimenez-Clavero M.A., Nunez J.I., Rosas M.F., Baranowski E., Ley V. Foot-and-mouth disease virus: a long known virus, but a current threat. Vet. Res., 2001, no. 32, pp. 1-30.

Rodriguez L.L., Grubman M.J. Foot and mouth disease virus vaccines.Vaccine,2009, no.27,pp. 90-94.

Grubman M.J., Baxt B. Foot–and–mouth disease.Clin.Microbiol. Rev.,2004, no. 17, pp. 465–493.

King A.M., Underwood B.O., McCahon D., Newman J.W., Brown F. Biochemical identification of viruses causing the 1981 outbreaks of foot and mouth disease in the UK.Nature, 1981, no. 293, pp. 479-480.

Cox S.J., Aggarwal N., Statham R.J., Barnett P.V. Longevity of antibody and cytokine responses following vaccination with high potency emergency FMD vaccines. Vaccine,2003, no. 21,pp. 1336-1347.

Park J.H., Kim S.J., Oem J.K., Lee K.N., Kim Y.J., Kye S.J., Park J.Y., Joo Y.S. Enhanced immune response with foot and mouth disease virus VP1 and interleukin–1 fusion genes.J. Vet. Sci., 2006,no. 7, pp. 257-262.

Xiao C., Jin H., Hu Y., Kang Y., Wang J., Du X., Yang Y., She R., Wang B. Enhanced protective efficacy and reduced viral load of foot–and–mouth disease DNA vaccine with co–stimulatory molecules as the molecular adjuvants.Antiviral Res., 2007,no. 76,pp. 11-20.

Du Y., Dai J., Li Y., Li C., Qi J., Duan S., Jiang P. Immune responses of recombinant adenovirus co–expressing VP1 of foot–and–mouth disease virus and porcine interferon alpha in mice and guinea pigs.Vet. Immunol.Immunopathol.,2008,no. 15,pp. 274-283.

Niborski V., Li Y., Brennan F., Lane M., Torche A. M., Remond M., Bonneau M., Riffault S., Stirling C., Hutchings G., Takamatsu H., Barnett P., Charley B., Schwartz–Cornil I. Efficacy of particle–based DNA delivery for vaccination of sheep against FMDV.Vaccine, 2006,no. 24,pp. 7204-7213.

Crisci E., Barcena J., Montoya M. Virus–like particles: the new frontier of vaccines for animal viral infections.Vet. Immunol.Immunopathol., 2012, no. 148,pp. 211-225.

Kushnir N., Streatfield S. J., Yusibov V. Virus–like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development.Vaccine, 2012,no. 31,pp. 58-83.

Brun A., Barcena J., Blanco E., Borrego B., Dory D., Escribano J.M., Le Gall–Recule G., Ortego J., Dixon L.K. Current strategies for subunit and genetic viral veterinary vaccine development.Virus Res., 2011, no. 157, pp. 1-12.

Fehr T., Skrastina D., Pumpens P., Zinkernagel R. M. T–cell–independent type I antibody response against B–cell epitopes expressed repetitively on recombinant virus particles.Proc. Natl. Acad. Sci. USA., 1998, no. 95,pp. 9477-9481.

Whitacre D.C., Lee B.O., Milich D.R. Use of hepadnavirus core proteins as vaccine platforms.Expert Rev. Vaccines, 2009, no. 8, pp. 1565-1573.

Crowther R.A., Kiselev N.A., Bottcher B., Berriman J.A., Borisova G.P., Ose V., Pumpens P. Three–dimensional structure of hepatitis B virus core particles determined by electron cryomicroscopy.Cell, 1994, no. 77, pp. 943-950.

Pumpens P., Grens E. HBV core particles as a carrier for B–cell/T–cell epitopes.Intervirology, 2001, no. 44,pp. 98-114.

Roose K., De Baets S., Schepens B., Saelens X. Hepatitis B core–based virus–like particles to present heterologous epitopes.Expert Rev. Vaccines, 2013,no. 12,pp. 183-198.

Ko Y. J., Jeoung H. Y., Lee H. S., Chang B. S., Hong S. M., Heo E. J., Lee K. N., Joo H. D., Kim S. M., Park J. H., Kweon C. H. A recombinant protein–based ELISA for detecting antibodies to foot–and–mouth disease virus serotype Asia 1. J. Virol. Methods, 2009, no. 159(1), pp. 112-118.

Zhang Y.L., Guo Y.J., Wang K.Y., Lu K., Li K., Zhu Y., Sun S.H. Enhanced immunogenicity of modified hepatitis B virus core particle fused with multiepitopesof foot–and–mouth disease virus.Scand. J. Immunol., 2007,no. 65(4), рр. 320-328.

Hilditch C.M., Rogers L.J., Bishop D.H. Physicochemical analysis of the hepatitis B virus core antigen produced by abaculovirus expression vector. J Gen Virol., 1990,no. 71(Pt 11), pp. 2755-2759.

Walker A., Skamel C., Nassal M. SplitCore: an exceptionally versatile viral nanoparticle for native whole protein display regardless of 3D structure. Sci Rep., 2011, no. 1(5), pp. 1-8.