Main Article Content


U. Kozhamkulov

Nazarbayev University, National Laboratory Astana, 53, Kabanbai Batyr Avenue, 010000, Astana, Kazakhstan

U. Kairov

Nazarbayev University, National Laboratory Astana, 53, Kabanbai Batyr Avenue, 010000, Astana, Kazakhstan

D. Yerezhepov

Nazarbayev University, National Laboratory Astana, 53, Kabanbai Batyr Avenue, 010000, Astana, Kazakhstan

A. Akhmetova

Nazarbayev University, National Laboratory Astana, 53, Kabanbai Batyr Avenue, 010000, Astana, Kazakhstan

A. Molkenov

Nazarbayev University, National Laboratory Astana, 53, Kabanbai Batyr Avenue, 010000, Astana, Kazakhstan

A. Akilzhanova

Nazarbayev University, National Laboratory Astana, 53, Kabanbai Batyr Avenue, 010000, Astana, Kazakhstan


Tuberculosis (TB) remains a major cause of morbidity and mortality in many countries and thus, represents a major public health problem in Kazakhstan and globally. An alternative and more promising option in the fight against this disease is the application of genetic diagnostic methods, for example, the detection of point mutations or other genetic determinants of TB drug resistance and genotyping of M. tuberculosis. Whole-genome sequencing and next-generation sequencing (NGS) technologies have developed rapidly in recent decades and are now applied in many branches of biomedical research. New NGS technologies allow us to study whole-genome sequences of pathogens associated with various infectious diseases, to study their molecular and genetic features, and thus, to understand these pathogens on a fundamental and practical basis in terms of microbiology, virology, and epidemiology.

This paper describes the application of high-performance “shotgun” next-generation sequencing, using a Roche 454 GS FLX + Titanium platform to determine the complete genome sequences of twenty clinical isolates of M. tuberculosis with different drug sensitivity profiles. The paper furthermore defines the quality indicators of genome sequencing, describes the de novo assembly of the complete genomes of M. tuberculosis isolates, and details the mapping and alignment to the reference genome of M. tuberculosis (H37Rv strain; GenBank database). The assembled genomes of two M. tuberculosis isolates were deposited in the NCBI GenBank database and are available for public access under the numbers AZBA00000000 and AZAZ00000000. The other genomes are available on request.


whole-genome sequencing, tuberculosis, Mycobacterium tuberculosis, DNA, pyrosequencing, genome

Article Details


World Health Organisation. Global tuberculosis report (2015) 20thedition. Available at: URL 10 June 2016).

Walzl G., Ronacher K., DjobaSiawaya J.F., Dockrell H.M. Biomarkers for TB treatment response: challenges and future strategies. J Infect., 2008, vol.57, рp.103-109. PMID:18649943.

Wallis R.S., Pai M., Menzies D.et al. Biomarkers and diagnostics for tuberculosis: progress, needs, and translation into practice.Lancet.,2010,vol.375, рр. 1920-1937.PMID: 20488517.

Telenti A., Imboden P., Marchesi F., Schmidheini T., Bodmer T. Direct, automated detection of rifampin-resistant Mycobacterium tuberculosis by polymerase chain reaction and single-strand conformation polymorphism analysis.Antimicrob. Agents Chemother., 1993,vol.37, рр. 2054-2058.PMID: 8257122.

Zhang Y., Heym B., Allen B., Young D., Cole S. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis.Nature, 1992,vol.358, рр. 591-593.PMID:1501713.

TakiffH.E., Salazar L., Guerrero C.et al. Cloning and nucleotide sequence of M.tuberculosisgyrA and gyrB genes and detection of quinolone resistance mutations. Antimicrob Agents Chemother., 1994,vol.38, рр. 773-780.PMID:8031045.

Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors.PNAS, 1977,vol.74 (12),рр. 5463-5467.PMID:271968.

Voelkerding K.V., Dames S.A., Durtschi J.D. Next-generation sequencing: from basic research to diagnostics.Clin. Chem., 2009,vol.55 (4),рр.641-658.PMID:19246620.

Moorthie S., Mattocks C.J., Wright C.F. Review of massively parallel DNA sequencing technologies. Hugo J., 2011, vol.5, рр. 1-12. PMID:23205160.

Kоser C.U., Ellington M.J., Cartwright E.J.P. et al. Routine use of microbial whole genome sequencing in diagnostic and public health microbiology. PLoS Pathogen, 2012, vol.8, e1002824. PMID:22876174.

Harris S.R., Cartwright E.J.P., Török M.E. et al. Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: a descriptive study. Lancet Infect Dis., 2013,vol.13, рр. 130-136. PMID:23158674.

Nakamura S., Maeda N., Miron I.M. et al. Metagenomic diagnosis of bacterial infections. Emerg. Infect. Dis., 2008, vol.14,рр.1784-1786. PMID:18976571.

Köser C.U., Holden M.T., Ellington M.J. et al. Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak. N. Engl. J. Med., 2012, vol. 366,рр. 2267-2275. PMID:22693998.

Filliol I., Motiwala A.S., Cavatore M. et al. Global phylogeny of Mycobacterium tuberculosis based on single nucleotide polymorphism (SNP) analysis: insights into tuberculosis evolution, phylogenetic accuracy of other DNA fingerprinting systems, and recommendations for a minimal standard SNP set. J Bacteriol., 2006, vol.188 (2),рр. 759-772.PMID:16385065.

Cole S.T., Brosch R., Parkhill J. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 1998,vol.393, рр. 537-544. PMID:9634230.

Fleischmann R.D., Alland D., Eisen J.A. et al. Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J. Bacteriol., 2002, vol.184, рр. 5479-5490. PMID:12218036.

Glynn J.R., Whiteley J., Bifani P.J., Kremer K. and van Soolingen D. Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis: a systematic review. EmergInfect. Dis., 2002,vol.8, рр. 843-849. PMID:12141971.

Van Soolingen D., Qian L., de Haas P.E. et al. Predominance of a single genotype of Mycobacterium tuberculosis in countries of East Asia. J. Clin. Microbiol., 1995, vol.33,рр. 3234-3238. PMID:8586708.

Kozhamkulov U., Akhmetova A., Rakhimova S. et al. Molecular characterization of rifampicin- and isoniazid-resistant Mycobacterium tuberculosis strains isolated in Kazakhstan. Japanese Journal of Infectious Disease.,2011,vol.64, рр. 253-255. PMID:21617314.

Akhmetova A., Kozhamkulov U., Bismilda V. et al. Mutations in the pncA and rpsA genes among 77 Mycobacterium tuberculosis isolates in Kazakhstan. International Journal of Tuberculosis and Lung Diseases, 2015, vol.19 (2), рр. 179-184. PMID: 25574916.

IbrayevaА., Kozhamkulov U., Raiymbek D.et al. Molecular epidemiology of Mycobacterium tuberculosis strains circulating in the penitentiary system of Kazakhstan. International Journal Tuberculosis and Lung Diseases, 2014, vol.18(3), рр. 298-301. PMID: 24670565.

Skiba Y., Mokrousov I., Ismagulova G. et al. Molecular snapshot of Mycobacterium tuberculosis population in Kazakhstan: A country-wide study. Tuberculosis, 2015, vol. 95 (5), рр. 538-546. PMID: 26076582.

Kairov U.,Kozhamkulov U., Molkenov A., RakhimovaS. et al. Draft Genome Sequences of Two Clinical Isolates of Mycobacterium tuberculosis from Sputum of Kazakh Patients.Genome announcements, 2015, vol.3 (3), e00466-15. doi:10.1128/genomeA.00466-15. PMID: 25977436.

Ilin A.I.,Kulmanov M.E.,Korotetskiyet I.S. et al. Complete Genome Sequence of Multidrug-Resistant Clinical Isolate Mycobacterium tuberculosis 187.0, Used To Study the Effect of Drug Susceptibility Reversion by the New Medicinal Drug FS-1.Genome announcements, 2015, vol.3(6), e01272-15.doi:10.1128/genomeA.01272-15. PMID: 26543112.

Van Soolingen D., de Haas P.E., Hermans P.W., van Embden J.D. DNA fingerprinting of Mycobacteriumtuberculosis. Methods Enzymol.,1994, vol.235, рр.196-205. PMID: 8057895.