Main Article Content


A.N. Iskakova

National Center for Biotechnology, 13/5,Korgalzhyn road, Astana, 010000, Kazakhstan

A.M. Aitkulova

National Center for Biotechnology, 13/5,Korgalzhyn road, Astana, 010000, Kazakhstan

N.S. Sikhayeva

National Center for Biotechnology, 13/5,Korgalzhyn road, Astana, 010000, Kazakhstan
L.N. Gumilyov Eurasian National University, 5,Munaitpasov str., Astana, 010000, Kazakhstan

A.A. Romanova

National Center for Biotechnology, 13/5,Korgalzhyn road, Astana, 010000, Kazakhstan


L. Maratkyzy

Asfendiyarov Kazakh Natoinal Medical University, Department Diabetes Center, 94,Tole bi str., 050000, Kazakhstan

Zh.A. Akanov

Asfendiyarov Kazakh Natoinal Medical University, Department Diabetes Center, 94,Tole bi str., 050000, Kazakhstan

E.V. Zholdybayeva

National Center for Biotechnology, 13/5,Korgalzhyn road, Astana, 010000, Kazakhstan


Type 2 diabetes is a common disease worldwide. Control of blood glucose level is important for effective therapy in patients with type 2 diabetes. Inhibitors of dipeptidyl peptidase-4(DPP-4) regulate blood glucose levels by increasing incretin hormone activity by blocking the enzyme DPP-4. Many drugs have negative side effects resulting inadverse drug reactions, which can ultimately lead to ineffective therapy. Drugs do not always work the same way for everyone, yet many currently available drugs are designed as “one size fits all” solution. Predicting who will benefit from a medication and who will not respond at all, or who will experience negative side effects is difficult. Pharmacogenomics is the study of how a person’s genes affect their response to drugs. Here, we identify and examine molecular genetic markers affecting the efficiency of DPP-4 inhibitor therapy. We identified CYP1A2 rs762551 and UGT2B7 rs7668258 to be associated with type 2 diabetes risk. Furthermore, we showed that CYP1A2 rs762551 and UGT2B7 rs7668258 can be usedas prognostic markers for complications, and as sensitivity markers for DPP-4 inhibitor therapy. Moreover,  ABCB1 rs1128503 and NAT2 rs1041983 were identified as molecular markers of DPP-4 treatment effectiveness and NAT2rs1041983 is responsible for the cardioprotective effects of DPP-4 inhibitors, irrespective of therapy effectiveness.


DPP4 inhibitors, SNP, diabetes mellitus, incretins

Article Details


New Data Show Investigational Compound Dapagliflozin Demonstrated Significant Reductions in Blood Sugar Levels When Added to Sitagliptin in Adults with Type 2 Diabetes at 24 Weeks, with Results Maintained Over 48 Weeks: press Release.Bristol–Myers Squibb Company,AstraZeneca. – Philadelphia, 2012.

Trunina E.N., Petunina N.A., Chorbinskaya S.A. Ingibitory dipeptidilpeptidazy-4 v lechenii saharnogo diabeta 2 tipa. Vozmozhnosti kardioprotekcii[Dipeptidylpeptidase-4 inhibitors in the treatment of type 2 diabetes mellitus. Cardioprotection options]. Saharnyi diabet - Diabetes mellitus, 2011, no. 2, pp. 59-64.

Klinicheskii protokol diagnostiki i lecheniya saharnyi diabet 2 tipa protokol no. 10 [Clinical protocol for diagnosis and treatment of type 2 diabetes protocol no. 10].Ed.А.А. Nurbekova, Zh.А. Akanov, N.S. Ahmad’yar, 2014.

Yabluchanskii N.I., Martim’yanova L.A., Bychkova O.Yu., Lysenko N.V., Makiyenko N.V. Glukagon-podobnyi peptid I kontrol’ glikemii pri saharnom diabete 2-go tipa [Glucagon-like peptide and glycemic control in type 2 diabetes mellitus].Verte, 2009, no. 6, pp. 3-5.

de Valk H.W. DPP–4 Inhibitors and Combined Treatment in Type 2 Diabetes: Re–evaluation of Clinical Success and Safety. Rev Diabet Stud, 2007,Vol. 4, no. 3,pp. 126-133.18084670.

Schweizer A., Dejager S., Bosi E. Comparison of vildagliptin and metformin monotherapy in elderly patients with type 2 diabetes: a 24–week, double–blind, randomized trial.Diabetes ObesMetab, 2009, vol. 11, no. 8,pp. 804-812. PMC2174059.

DeFronzo R.A., Hissa M.N., Garber A.J., Luiz Gross J., YuyanDuan R., Ravichandran S., Chen R.S. The efficacy and safety of saxagliptin when added to metformin therapy in patients with inadequately controlled type 2 diabetes with metformin alone.Diabetes care, 2009,vol. 32, no. 9,pp. 1649-1655. PMC2732156.

Crickx E., Marroun I., Veyrie C., Le Beller C., Schoindre Y., Bouilloud F., Bletry O., Kahn J. E. DPP4 inhibitor–induced polyarthritis: a report of three cases.RheumatolInt, 2014,vol. 34, no. 2,pp. 291-292. 23462883.

Saito T., Ohnuma K., Suzuki H., Dang N.H., Hatano R., Ninomiya H., Morimoto C. Polyarthropathy in type 2 diabetes patients treated with DPP4 inhibitors.Diabetes Res ClinPract, 2013,vol. 102, no. 1,pp. e8-e12.23937822.

Mendonca F.M., Martin–Gutierrez F.J., Rios–Martin J.J., Camacho–Martinez F. Three Cases of Bullous Pemphigoid Associated with Dipeptidyl Peptidase–4 Inhibitors – One due to Linagliptin.Dermatology, 2016,vol. 232, no. 2,pp. 249-253.26820308.

Foley J.E., BhosekarV., KawamoriR. Does the treatment of type 2 diabetes mellitus with the DPP –4 inhibitor vildagliptin reduce HbA1c to a greater extent in Japanese patients than in Caucasian patients?Vascular Health and Risk Management,2016,vol. 12,pp. 9-12.26855580.

Kim Y.G., Hahn S., Oh T.J., Kwak S.H., Park K.S., Cho Y.M. Differences in the glucose–lowering efficacy of dipeptidyl peptidase–4 inhibitors between Asians and non–Asians: a systematic review and meta–analysis.Diabetologia, 2013,vol. 56,pp. 696-708.23344728

Avogaro A., de Kreutzenberg S., Fadini G. Dipeptidyl–peptidase 4 inhibition: linking metabolic control to cardiovascular protection.Curr Pharm Des, 2014,vol. 20, no. 14,pp. 2387-2394.23844811.

Zhong J., Maiseyeu A., Davis S.N., Rajagopalan S. DPP4 in cardiometabolic disease: recent insights from the laboratory and clinical trials of DPP4 inhibition.Circ Res, 2015,vol. 116, no. 8,pp. 1491-1504.25858071.

Khalimov Yu. Sh. Vzglyadoptimista.Neglikemicheskieeffektyingibitorov DPP-4 [The optimist's view. Non-glycemic effects of DPP-4 inhibitors]. Effektivnayafarmakoterapiya– Effective pharmacotherapy, 2015, no. 7, pp. 48-49.

Ishikawa S., Ishikawa S., Shimano M., Watarai M., Koyasu M., Uchikawa T., Ishii H., Inden Y., Takemoto K., Murohara T. Impact of sitagliptin on carotid intima–media thickness in patients with coronary artery disease and impaired glucose tolerance or mild diabetes mellitus.Am J Cardiol, 2014,vol. 114, no. 3,рр. 384-388.24929624.

Javorsky M., Gotthardova I., Klimcakova L., Kvapil M., Zidzik J., Schroner Z., Doubravova P., et al. A missense variant in GLP1R gene is associated with the glycaemic response to treatment with gliptins.Diabetes ObesMetab, 2016, vol. 18, no. 9,pp. 941-944.27160388.

Zimdahl H., Ittrich C., Graefe–Mody U., Boehm B.O., Mark M., Woerle H.J., Dugi K.A. Influence of TCF7L2 gene variants on the therapeutic response to the dipeptidylpeptidase–4 inhibitor linagliptin.Diabetologia, 2014,vol. 57, no. 9,pp. 1869-1875.24906949.

tHart L.M., Fritsche A., Nijpels G., van Leeuwen N., Donnelly L.A., Dekker J.M., Alssema M., et al. The CTRB1/2 locus affects diabetes susceptibility and treatment via the incretin pathway.Diabetes, 2013,vol. 62, no. 9,pp. 3275-3281.23674605

Morris A.P., Voight B.F., Teslovich T.M., Ferreira T., Segre A.V., Steinthorsdottir V., Strawbridge R.J., et al. Large–scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes.Nat Genet, 2012, vol. 44, no. 9,pp. 981-990.22885922.

Osada U.N., Sunagawa H., Terauchi Y., Ueda S. A Common Susceptibility Gene for Type 2 Diabetes Is Associated with Drug Response to a DPP–4 Inhibitor: Pharmacogenomic Cohort in Okinawa Japan.PLoS One, 2016,vol. 11, no. 5.27139004.

Jamaluddin J.L., Huri H.Z., Vethakkan S.R. Clinical and genetic predictors of dipeptidyl peptidase–4 inhibitor treatment response in Type 2 diabetes mellitus.Pharmacogenomics, 2016,vol. 17, no. 8,pp. 867-881.27249660.

Matsui M., Takahashi Y., Takebe N., Takahashi K., Nagasawa K., Honma H., Oda T., et al. Response to the dipeptidyl peptidase–4 inhibitors in Japanese patients with type 2 diabetes might be associated with a diplotype of two single nucleotide polymorphisms on the interleukin–6 promoter region under a certain level of physical activity.J Diabetes Investig, 2015,vol. 6, no. 2, pp. 173-181. 25802725.

Miller S.A., Dykes D.D., Polesky H.F. A simple salting out procedure for extracting DNA from human nucleated cells.Nucleic Acids Res, 1988,vol. 16,pp. 1255.3344216.

Iskakova A.N., Romanova A.A., Aitkulova A.M., Sikhayevа N.S., Zholdybayeva E.V., Ramanculov E.M. Polymorphisms in genes involved in the absorption, distribution, metabolism, and excretion of drugs in the Kazakhs of Kazakhstan.BMC Genet, 2016,vol. 17, no. 23,pp. 016-0329.26785747.

Scheen A.J. Dipeptidylpeptidase–4 inhibitors (gliptins): focus on drug—drug interactions.ClinPharmacokinet, 2010,vol. 49,pp. 573-588.20690781

Chu X.Y., Bleasby K., Yabut J., et al. Transport of the dipeptidyl peptidase–4 inhibitor sitagliptin by human organic anion transporter 3, organic anion transporting polypeptide 4C1, and multidrug resistance P–glycoprotein.J PharmacolExpTher,2007,vol. 321, pp. 673-683.17314201.

Iskakova A.N. Molekulyarno-geneticheskiemarkerycuvstvitelnosti k ingibitoram dipeptidilpeptidazy-4[Molecular-genetic markers of sensitivity to dipeptidylpeptidase-4 inhibitors. PhD. Diss.] Almaty, 2016, рр.60-61.

Jones P.M., George A.M. The ABC transporter structure and mechanism: perspectives on recent research.Cell Mol Life Sci, 2004,vol. 61, no. 6,pp. 682-699.15052411.

Ambudkar S.V., Dey S., Hrycyna C.A., Ramachandra M., Pastan I., Gottesman M. M. Biochemical, cellular, and pharmacological aspects of the multidrug transporter.Annu Rev PharmacolToxicol,1999,vol. 39,pp. 361-398.10331089.

Hodges L.M., Markova S.M., Chinn L.W., Gow J.M., Kroetz D.L., Klein T.E., Altman R.B. Very important pharmacogene summary: ABCB1 (MDR1, P–glycoprotein).Pharmacogenet Genomics, 2011,vol. 21, no. 3,pp. 152-161. 20216335.

Leschziner G.D., Andrew T., Pirmohamed M., Johnson M.R. ABCB1 genotype and PGP expression, function and therapeutic drug response: a critical review and recommendations for future research.Pharmacogenomics J, 2007,vol. 7, no. 3, pp. 154-179.16969364.

Schaich M., Kestel L., Pfirrmann M., Robel K., Illmer T., Kramer M., Dill C., et al. A MDR1 (ABCB1) gene single nucleotide polymorphism predicts outcome of temozolomide treatment in glioblastoma patients.Ann Oncol, 2009,vol. 20, no. 1,pp. 175-181.18687982.

Zhang Y.T., Yang L.P., Shao H., Li K.X., Sun C.H., Shi L.W. ABCB1 polymorphisms may have a minor effect on ciclosporin blood concentrations in myasthenia gravis patients.Br J ClinPharmacol,2008,vol. 66, no. 2,pp. 240-246.18717915.

Estrela Rde C., Ribeiro F.S., Barroso P.F., Tuyama M., Gregorio S.P., Dias–Neto E., Struchiner C.J., et al. ABCB1 polymorphisms and the concentrations of lopinavir and ritonavir in blood, semen and saliva of HIV–infected men under antiretroviral therapy.Pharmacogenomics, 2009,vol. 10, no. 2,pp. 311-318.19207033.

Song Y.L., et al. CYP1A2–163C/A (rs762551) polymorphism and bladder cancer risk: a case–control study.Genet Mol Res, 2016,vol. 15, no. 2,pp. 15026298.27173252.

Denden S., Bouden B., Haj KhelilA., Ben Chibani J., Hamdaoui M.H. Gender and ethnicity modify the association between the CYP1A2 rs762551 polymorphism and habitual coffee intake: evidence from a meta–analysis.Genet Mol Res,2016,vol. 15, no. 2,pp. 15027487.27173183.

Urry E., Jetter A., Landolt H.P. Assessment of CYP1A2 enzyme activity in relation to type–2 diabetes and habitual caffeine intake.NutrMetab, 2016,vol. 13, no. 66.27713762

Mackenzie P.I., Bock K.W., Burchell B., Guillemette C., Ikushiro S., Iyanagi T., Miners J.O., Owens I.S., Nebert D.W. Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily.Pharmacogenet Genomics, 2005,vol. 15, no. 10,pp. 677-685.16141793.