Main Article Content


S. Atavliyeva

National Center for Biotechnology, 13/5, Korgalzhyn road, Astana, 010000, Kazakhstan

D. Mukhamedyarov

National Center for Biotechnology, 13/5, Korgalzhyn road, Astana, 010000, Kazakhstan

A. Anuarbekova

National Center for Biotechnology, 13/5, Korgalzhyn road, Astana, 010000, Kazakhstan

P. Tarlykov

National Center for Biotechnology, 13/5, Korgalzhyn road, Astana, 010000, Kazakhstan



Cost-efficient methods for the collection and storage of biological samples are currently in great demand in the life sciences field. The storage of material on a filter paper carrier has been recently introduced as an option. The carrier is a chemically-treated sample collection matrix that lyses cells and preserves DNA spotted onto the paper. A similar paper-based collection of DNA samples is currently used in many areas of research due to its simplicity, safety, and affordable price. Nowadays, a variety of biological samples are suitable for collection with this carrier, including not only blood and buccal epithelial cells but also bacterial, plant, and insect biomaterial. This review will cover the latest application areas of the paper-based biomaterial collection in areas such as healthcare, microbiology, and agriculture.



DNA, identification, buccal cells, filter paper, PCR

Article Details


Tarlykov P.V., Zholdybayeva E.V., Akilzhanova A.R. et al. Mitochondrial and Y-chromosomal profile of the Kazakh population from East Kazakhstan. Croat Med J, 2013, vol. 54, no. 1, pp. 17-24. doi: 10.3325/cmj.2013.54.17.

Mendez F.L., Krahn T., Schrack B. et al. An African American paternal lineage adds an extremely ancient root to the human Y chromosome phylogenetic tree. Am J Hum Genet, 2013, vol. 92, no. 3, pp. 454-459. doi: 10.1016/j.ajhg.2013.02.002.

Fu Q., Posth C., Hajdinjak M. et al. The genetic history of Ice Age Europe. Nature, 2016, vol. 534, no. 7606, pp. 200-205. doi: 10.1038/nature17993.

Moretti T.R., Moreno L.I., Smerick J.B. et al. Population data on the expanded CODIS core STR loci for eleven populations of significance for forensic DNA analyses in the United States. Forensic Sci Int Genet, 2016, vol. 25, no., pp. 175-181. doi: 10.1016/j.fsigen.2016.07.022.

Budowle B., Moretti T.R., Baumstark A.L. et al. Population data on the thirteen CODIS core short tandem repeat loci in African Americans, U.S. Caucasians, Hispanics, Bahamians, Jamaicans, and Trinidadians. J Forensic Sci, 1999, vol. 44, no. 6, pp. 1277-1286.

Khanov T.A., Sikhimbayev M.R., Birzhanov B.K. et al. Genomic registration as a universal personal identifier in crime prevention: the research and prospects of introduction. Russian Journal of Criminology, 2016, vol. 10, no. 3, pp. 544-553. doi: 10.17150/2500-4255.2016.10(3).544-553.

Ledray L.E., Netzel L. DNA evidence collection. J Emerg Nurs, 1997, vol. 23, no. 2, pp. 156-158. doi: 10.1016/S0099-1767(97)90106-9.

Roper S.M., Tatum O.L. Forensic aspects of DNA-based human identity testing. J Forensic Nurs, 2008, vol. 4, no. 4, pp. 150-156. doi: Crossref.

Holland N.T., Smith M.T., Eskenazi B. et al. Biological sample collection and processing for molecular epidemiological studies. Mutat Res, 2003, vol. 543, no. 3, pp. 217-234. doi: Crossref.

Harty L.C., Garcia-Closas M., Rothman N. et al. Collection of buccal cell DNA using treated cards. Cancer Epidemiology Biomarkers & Prevention, 2000, vol. 9, no. 5, pp. 501-506.

Sigurdson A.J., Ha M., Cosentino M. et al. Long-term storage and recovery of buccal cell DNA from treated cards. Cancer Epidemiol Biomarkers Prev, 2006, vol. 15, no. 2, pp. 385-388. doi: 10.1158/1055-9965.EPI-05-0662.

Guthrie R., Susi A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics, 1963, vol. 32, no., pp. 338-343.

Wolfgramm Ede V., de Carvalho F.M., Aguiar V.R. et al. Simplified buccal DNA extraction with FTA Elute Cards. Forensic Sci Int Genet, 2009, vol. 3, no. 2, pp. 125-127. doi: 10.1016/j.fsigen.2008.11.008.

Smith L.M., Burgoyne L.A. Collecting, archiving and processing DNA from wildlife samples using FTA databasing paper. BMC Ecol, 2004, vol. 4, no., pp. 4. doi: 10.1186/1472-6785-4-4.

Mas S., Crescenti A., Gasso P. et al. DNA cards: determinants of DNA yield and quality in collecting genetic samples for pharmacogenetic studies. Basic Clin Pharmacol Toxicol, 2007, vol. 101, no. 2, pp. 132-137. doi: 10.1111/j.1742-7843.2007.00089.x.

Lema C., Kohl-White K., Lewis L.R. et al. Optimized pH method for DNA elution from buccal cells collected in Whatman FTA cards. Genet Test, 2006, vol. 10, no. 2, pp. 126-130. doi: 10.1089/gte.2006.10.126.

Milne E., van Bockxmeer F.M., Robertson L. et al. Buccal DNA collection: comparison of buccal swabs with FTA cards. Cancer Epidemiol Biomarkers Prev, 2006, vol. 15, no. 4, pp. 816-819. doi: 10.1158/1055-9965.EPI-05-0753.

Zou Y., Mason M.G., Wang Y. et al. Nucleic acid purification from plants, animals and microbes in under 30 seconds. PLoS Biol, 2017, vol. 15, no. 11, pp. e2003916. doi: 10.1371/journal.pbio.2003916.

Wilkinson S., Law B., Whitney S. et al. Innovative technology to stabilize DNA at room temperature in tissue and cells. The FASEB Journal, 2010, vol. 24, no. 1_supplement, pp. 650.654-650.654. doi: 10.1096/fasebj.24.1_supplement.650.4.

Tack L.C., Thomas M., Reich K. Automated forensic DNA purification optimized for FTA card punches and identifiler STR-based PCR analysis. Clin Lab Med, 2007, vol. 27, no. 1, pp. 183-191. doi: 10.1016/j.cll.2006.12.009.

Park S.J., Kim J.Y., Yang Y.G. et al. Direct STR amplification from whole blood and blood- or saliva-spotted FTA without DNA purification. J Forensic Sci, 2008, vol. 53, no. 2, pp. 335-341. doi: 10.1111/j.1556-4029.2008.00666.x.

Beckett S.M., Laughton S.J., Pozza L.D. et al. Buccal swabs and treated cards: methodological considerations for molecular epidemiologic studies examining pediatric populations. Am J Epidemiol, 2008, vol. 167, no. 10, pp. 1260-1267. doi: 10.1093/aje/kwn012.

Kornienko I.V., Faleeva T.G., Bachurin S.S. et al. The evaluation of stability of blood stains immobilized on the FHA cards during their prolonged storage. Sudebno-meditsinskaia ekspertiza, 2014, vol. 57, no. 4, pp. 28-30.

Dobbs L.J., Madigan M.N., Carter A.B. et al. Use of FTA gene guard filter paper for the storage and transportation of tumor cells for molecular testing. Arch Pathol Lab Med, 2002, vol. 126, no. 1, pp. 56-63. doi: 10.1043/0003-9985(2002)126<0056:UOFGGF>2.0.CO;2.

Struewing J.P., Hartge P., Wacholder S. et al. The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N Engl J Med, 1997, vol. 336, no. 20, pp. 1401-1408. doi: 10.1056/Nejm199705153362001.

da Cunha Santos G. FTA cards for preservation of nucleic acids for molecular assays: a review on the use of cytologic/tissue samples. Arch Pathol Lab Med, 2018, vol. 142, no. 3, pp. 308-312. doi: 10.5858/arpa.2017-0303-RA.

Sokolova O.I., Dem'ianov A.V., Bovers L.S. et al. On the use of FTA technology for collection, archieving, and molecular analysis of microsporidia dna from clinical stool samples. Tsitologiia, 2011, vol. 53, no. 11, pp. 911-914.

McClure M.C., McKay S.D., Schnabel R.D. et al. Assessment of DNA extracted from FTA cards for use on the Illumina iSelect BeadChip. BMC Res Notes, 2009, vol. 2, no. 107, pp. 1756-0500. doi: 10.1186/1756-0500-2-107.

Sierra-Arguello Y.M., Faulkner O., Tellez G. et al. The use of FTA cards for transport and detection of gyrA mutation of Campylobacter jejuni from poultry. Poult Sci, 2016, vol. 95, no. 4, pp. 798-801. doi: 10.3382/ps/pev384.

Pulido-Landínez M., Laviniki V., Sánchez-Ingunza R. et al. Use of FTA cards for the transport of DNA samples of Salmonella spp. from poultry products from Southern Brazil. Acta Scientiae Veterinariae, 2012, vol. 40, no. 4, pp. 1073. doi: 10.13140/2.1.3015.5201.

Shi R., Panthee D.R. A novel plant DNA extraction method using filter paper-based 96-well spin plate. Planta, 2017, vol. 246, no. 3, pp. 579-584. doi: 10.1007/s00425-017-2743-3.