Main Article Content


A.D. Kairzhanova

National Center for Biotechnolog,  13/5, Korgalzhyn road, Astana, 000001, Kazakhstan

M.A. Temirbayeva

City Infectious Diseases Hospita,  Manas str, 22/3, Astana, 000001, Kazakhstan

S.K. Atygayeva

City Infectious Diseases Hospita,  Manas str, 22/3, Astana, 000001, Kazakhstan

Zh.U. Abdrakhmanova

City Infectious Diseases Hospita,  Manas str, 22/3, Astana, 000001, Kazakhstan

V.B. Shvedyuk

National Center for Biotechnolog,  13/5, Korgalzhyn road, Astana, 000001, Kazakhstan

A.V. Shustov

National Center for Biotechnolog,  13/5, Korgalzhyn road, Astana, 000001, Kazakhstan

L.G. Stoyanova

Department of Microbiology, Lomonosov Moscow State University, 1/12, Leninskie gory, Moscow, 119991, Russian Federation.

M.A. Kuibagarov

National Center for Biotechnolog,  13/5, Korgalzhyn road, Astana, 000001, Kazakhstan

A.B. Shevtsov

National Center for Biotechnolog,  13/5, Korgalzhyn road, Astana, 000001, Kazakhstan


Staphylococcus aureus colonization presents as a wide range of clinical infections and can lead to severe complications including death in human subjects. Currently, routine monitoring practices include methods of genetic fingerprinting for tracing outbreaks, as well as for global epidemiological studies. The use of rapid PCR-based methods including SPA-typing allow for classification of isolates with high virulence and drug resistance. The purpose of this study was to characterise isolates from Astana city hospital inpatients in 2017. A total of 153 isolates were collected. SPA-type could not be identified for seven samples, whereas as many as 61 SPA-types were found for the remaining 146 isolates. The most prevalent SPA-types were: t521 (10.6%), t267 (9.8%), t002 (6.5%), t024 (5.9%) and t091 (5.9%). Notably, low antibiotic resistance was found in 3.2% of MRSA isolates and in 7.8% of MSSA-MDR isolates. In 153 strains of S. aureus, a high percentage of resistance was found to trimethoprim (96.7%) and penicillin (84.3%). Erythromycin, clindamycin and tetracycline resistance were recorded in 6.5% of the isolates, and chloramphenicol, oxacillin, cefoxitin, doxycycline, ciprofloxacin and gentamicin resistance did not exceed 4%. All isolates were sensitive to vancomycin, linezolid and rifampicin. Regular monitoring can improve treatment program effectiveness and help to control the circulation of antibiotic resistant strains.


Staphylococcus aureus antibiotic resistance, SPA-typing staphylococcus aureus, bacterial analysis in hospitalized patients

Article Details


Juhasz-Kaszanyitzky E., Janosi S., Somogyi P., Dan A., van der Graf-van Bloois L., van Duijkeren E., Wagenaar J.A. MRSA transmission between cows and humans. Emerg Infect Dis, 2007, vol. 134(4), no. 630, pp. 2. doi: 10.3201/eid1304.060833

Klein E., Smith D., Laxminarayan R. Hospitalizations and deaths caused by methicillinresistant Staphylococcus aureus, United States, 1999–2005. Emerg. Infect. Dis, 2007, vol. 13, no. 12. pp. 1840-6. doi: 10.3201/eid1312.070629

Lowy F.D. Staphylococcus aureus infections. N. Engl.J. Med, 1998, vol. 339, pp. 520-532. DOI: 10.1056/NEJM199808203390806

Waldvogel F.A. Staphylococcus aureus (including staphylococcal toxic shock). In Principles and practice of infectious diseases. G.L. Mandell, J.E. Bennett, and R. Dolin, editors. Churchill Livingstone. Philadelphia, Pennsylvania, USA. p. 2069–2092. doi: 10.3201/eid1104.040893

Mylotte J.M., McDermott C., Spooner .JA. Prospective study of 114 consecutive episodes of Staphylococcus aureus bacteremia. Rev. Infect. Dis, 1987, vol. 9, pp. 891–907. PMID: 3317734

Kluytmans J., van Belkum A., Verbrugh H. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol, 1997, vol. 10, no. 50, pp. 20. PMID: 9227864

Gorwitz R.J., et al. Changes in the prevalence of nasal colonization with Staphylococcus aureus in the United States, 2001–2004. J Infect Dis, 2008, vol. 197, no. 1226, pp. 34. PMID: 9227864

Bischoff W.E., Edmond M.B. Staphylococcus aureus. A Guide to Infection Control in the Hospital, 2002, pp. 345.

Chambers H.F. Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin. Microbiol, 1997, vol. 10, pp. 781–791 PMID: 9336672

Lowy F. Antimicrobial resistance: the example of Staphylococcus aureus. J. Clin. Invest, 2003, vol. 111 (9), no. 1265, pp. 73. doi: 10.1172/JCI18535

Turlej A., Hryniewicz W., Empel J. Staphylococcal cassette chromosome mec (Sccmec) classification and typing methods: an overview. Pol. J. Microbiol, 2011, vol. 60 (2), pp. 95–103. PMID: 21905625

Colin D.A., Mazurier I., Sire S., Finck-Barbançon V. Interaction of the two components of leukocidin from Staphylococcus aureus with human polymorphonuclear leukocyte membranes: Sequential binding and subsequent activation. Infect Immun, 1994, vol. 62, no. 3184, pp. 8. PMID: 8039887

O'Hara F.P., Guex N., Word J.M., Miller L.A., Becker J.A., Walsh S.L., et al. A geographic variant of the Staphylococcus aureus Panton-Valentine leukocidin toxin and the origin of community-associated methicillin-resistant S. aureus USA300. J. Infect Dis, 2008, vol. 197, no. 187, pp. 94. doi: 10.1086/524684

Parker D., Prince A. Immunopathogenesis of Staphylococcus aureus pulmonary infection. Semin Immunopathol, 2012; vol. 34, no. 2, pp. 281-97. doi: 10.1007/s00281-011-0291-7

Strommenger B., Braulke C., Heuck D. et al. SPA¬typing of Staphylococcus aureus as a frontline tool in epidemiological typing. J. Clin. Microbiol, 2008, vol. 46, pp. 574-¬581. doi: 10.1128/JCM.01599-07

Konstantiniuk P., Grisold A., Schramayer G., Santler S.C., Koter S., Cohnert T. Impact of Staphylococcus aureus protein A (spa) genetic typing in cases of prosthetic shunt graft infections. Gefasschirurgie, 2016, vol. 21, pp. 59-62.

Cuny C., Layer F., Werner G., Harmsen D., Daniels-Haardt I., Jurke A., Mellmann A., Witte W. Köck R.State-wide surveillance of antibiotic resistance patterns and spa types of methicillin-resistant Staphylococcus aureus from blood cultures in North Rhine-Westphalia. Clin Microbiol Infect, 2015, vol. 21, no. 750, pp. 7. doi: 10.1016/j.cmi.2015.02.013.

Clayton R. A., Sutton G., Hinkle P. S., Bult Jr. C., Fields C. Intraspecific variation in small-subunit rRNA sequences in GenBank: why single sequences may not adequately represent prokaryotic taxa. International Journal of Systematic Bacteriology, 1995, vol. 45, pp. 595-599. doi: 10.1099/00207713-45-3-595

Performance standards for antimicrobial susceptibility Testing. Clinical and Laboratory Standards Institute (CLSI). Twenty-First informational supplement, 2011, vol. 31, no. 1, CLSI document M100-S21.

Magiorakos A-P, Srinivasan A., Carey R.B., Carmeli Y., Falagas M.E., Giske C.G., Harbarth S., Hindler J.F., Kahlmeter G., Olsson-Liljequist B., Paterson D.L., Rice L.B., Stelling J., Struelens M.J., Vatopoulos A., Weber J.T., Monnet D.L. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 2012, vol. 18, pp. 268–281. . doi: 10.1111/j.1469-0691.2011.03570.x.

Louie L., Goodfellow J., Mathieu P., Glatt A., Louie M., Simor A. E. Rapid Detection of Methicillin-Resistant Staphylococci from Blood Culture Bottles by Using a Multiplex PCR Assay. Journal of Clinical Microbiology, 2002, vol. 40, no. 8, pp. 2786–2790. doi: 10.1128/JCM.40.8.2786–2790.2002

Stegger M., Andersen P.S., Kearns A., Pichon B., Holmes M.A., Edwards G., Laurent F., Teale C., Skov R., Larsen A.R. Rapid detection, differentiation and typing of methicillin-resistant Staphylococcus aureus harbouring either mecA or the new mecA homologue mecA(LGA251). Clin Microbiol Infect, 2012, vol. 18, no. 4, pp. 395-400. doi: 10.1111/j.1469-0691.2011.03570.x

Harmsen D. Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J Clin Microbiol, 2003, no. 41, pp. 5442–5448. PMID: 14662923

Werle E., Schneider C., Renner M., Völker M., Fiehn W. Convenient single-step, one tube purification of PCR products for direct sequencing. Nucleic Acids Res, 1994, vol. 22, pp. 4354-4355. PMID: 7937169

Baum C, Haslinger-Löffler B, Westh H, Boye K, Peters G, Neumann C, Kahl BC. Non-spa-typeable clinical Staphylococcus aureus strains are naturally occurring protein A mutants. Journal of Clinical Microbiology, 2009, vol. 47, pp. 3624–3629. doi: 10.1128/JCM.00941-09.

Asadollahi P., Farahani N., Mirzaii M., Khoramrooz S., van Belkum A., Asadollahi K., Dadashi M., Darban-Sarokhalil D. Distribution of the Most Prevalent Spa Types among Clinical Isolates of Methicillin-Resistant and -Susceptible Staphylococcus aureus around the World. Front Microbiol, 2018, vol. 12, no. 9, pp. 163. doi: 10.3389/fmicb.2018.00163.

Grundmann H., Aanensen D.M., van den Wijngaard C.C., Spratt B.G., Harmsen D., Friedrich A.W. Geographic distribution of Staphylococcus aureus causing invasive infections in Europe: a molecular-epidemiological analysis. PLoS Med, 2010, no. 7, pp. 1. doi: 10.1371/journal.pmed.1000215.

Enright M. C., Robinson D. A., Randle G., Feil E. J., Grundmann H., Spratt B.G. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc Natl Acad Sci USA, 2002, vol. 99, no. 11, pp. 87-92. doi: 10.1073/pnas.122108599

Gomes A.R., Westh H., de Lencastre H. Origins and evolution of methicillin-resistant Staphylococcus aureus clonal lineages. Antimicrob Agents Chemother, 2006, vol. 50(10), no. 3237, pp. 44. doi: 10.1128/AAC.00521-06

Eckhardt C., Halvosa J.S., Ray S.M., Blumberg H.M. Transmission of methicillin-resistant Staphylococcus aureus in the neonatal intensive care unit from a patient with community-acquired disease. Infect Control Hosp Epidemiol, 2003, vol. 24, no. 460, pp. 1. PMID: 23177801

Kaur H., Purwar S., Saini A., Kaur H., Karadesai S.G., Kholkute S.D. Status of methicillin resistant Staphylococcus aureus infections and evaluation of PVL producing strains in Belgium. South India JKIMSU, 2012, vol. 1, pp. 43–51.

Song Y., Du X., Li T., Zhu Y., Li M. Phenotypic and molecular characterization of Staphylococcus aureus recovered from different clinical specimens of inpatients at a teaching hospital in Shanghai between 2005 and 2010. J Med Microbiol, 2013, vol. 62 (2), no. 274, pp. 82. doi: 10.1099/jmm.0.050971-0.

He W, Chen H, Zhao C, Zhang F, Li H, Wang Q, Wang X, Wang H. Population structure and characterisation of Staphylococcus aureus from bacteraemia at multiple hospitals in China: association between antimicrobial resistance, toxin genes and genotypes. Int J Antimicrob Agents, 2013, vol. 42(3), no. 211, pp. 9. doi: 10.1016/j.ijantimicag.2013.04.031.

Baranovich T., Zaraket H., Shabana I.I., Nevzorova V., Turcutyuicov V., Suzuki H. Molecular characterization and susceptibility of methicillin-resistant and methicillin-susceptible Staphylococcus aureus isolates from hospitals and the community in Vladivostok, Russia. Clin Microbiol Infect, 2010, vol. 16(6), no. 575, pp. 82. doi: 10.1016/j.ijantimicag.2013.04.031.

Vorobieva V., Bazhukova T., Hanssen A.M., Caugant D.A., Semenova N., Haldorsen B.C., Simonsen G.S., Sundsfjord A. Clinical isolates of Staphylococcus aureus from the Arkhangelsk region, Russia: antimicrobial susceptibility, molecular epidemiology, and distribution of Panton-Valentine leukocidin genes. APMIS, 2008, vol. 116(10), no. 877, pp. 87. doi: 10.1016/j.ijantimicag.2013.04.031.