RECENT DEVELOPMENTS IN THE EXAMINATION OF THE BIOLOGY AND ANTIBIOTIC RESISTANCE MECHANISMS OF ANAEROBIC PATHOGENS
Main Article Content
Authors
Abstract
Recent developments in the examination of the biology and antibiotic resistance mechanisms of anaerobic pathogens have significantly advanced our understanding of these organisms. Studies utilizing genomic and proteomic approaches have uncovered specific genetic determinants linked to virulence and resistance, revealing how pathogens like *Bacteroides fragilis* and *Clostridium difficile* adapt to antibiotic pressures. Mechanisms such as enzymatic degradation, efflux pumps, and biofilm formation have been identified as key contributors to their resilience against treatment. Additionally, the interplay between anaerobic pathogens and the human microbiome is being explored, highlighting how dysbiosis can lead to opportunistic infections. As antibiotic resistance continues to pose a major public health challenge, ongoing research is crucial for developing novel therapeutic strategies and improving diagnostic methods to effectively combat these resilient pathogens.
Keywords
Bacteroides, sub-inhibitory concentrations, resistance mechanism, carbapenems, genomics, proteomics
Article Details
References
Wexler HM. Bacteroides: the good, the bad and the nitty-gritty. Clin Microbiol Rev. 2007;20(4):593-621.
Nagy E. Anaerobic infections: Update on treatment considerations. Drugs. 2010;70(7):841-58; doi: 10.2165/11534490-000000000-00000.
Patrick S. A tale of two habitats: Bacteroides fragilis, a lethal pathogen and resident in the human gastrointestinal microbiome. Microbiology (Reading). 2022;168(4); doi: 10.1099/mic.0.001156.
Erturk-Hasdemir D, Kasper DL. Finding a needle in a haystack: Bacteroides fragilis polysaccharide A as the archetypical symbiosis factor. Ann N Y Acad Sci. 2018;1417(1):116-29; doi: 10.1111/nyas.13660.
Sóki J. Extended role for insertion sequence elements in the antibiotic resistance of Bacteroides. World Journal of Clinical Infectious Diseases. 2013;3(1):1-12; doi: 10.5495/wjcid.v3.i1.1.
Sóki J, Keszőcze A, Nagy I, Burián K, Nagy E. An update on ampicillin resistance and β-lactamase genes of Bacteroides spp. Journal of Medical Microbiology. 2021;70(8); doi: 10.1099/jmm.0.001393.
Parker AC, Smith C. J. Genetic and biochemical analysis of a novel Ambler class A b-lactamase responsible for cefoxitin resistance in Bacteroides species. AntimicrobAgents Chemother. 1993;37:1028-36.
Sóki J, Gonzalez SM, Urbán E, Nagy E, Ayala JA. Molecular analysis of the effector mechanisms of cefoxitin resistance among Bacteroides strains. Journal of Antimicrobial Chemotherapy. 2011;66(11):2492-500; doi: 10.1093/jac/dkr339.
Baaity Z, von Loewenich FD, Nagy E, Orosz L, Burián K, Somogyvári F, et al. Phenotypic and Molecular Characterization of Carbapenem-Heteroresistant Bacteroides fragilis Strains. Antibiotics. 2022;11(5); doi: 10.3390/antibiotics11050590.
Nagy E, Becker S, Sóki J, Urbán E, Kostrzewa M. Differentiation of division I (cfiA-negative) and division II (cfiA-positive) Bacteroides fragilis strains by matrix-assisted laser desorption/ionization time of-flight mass spectrometry. Journal of Medical microbiology. 2011;60(11):1584-90; doi: 10.1099/jmm.0.031336-0.
Oles RE, Carrillo Terrazas M, Loomis LR, Hsu CY, Tribelhorn C, Belda-Ferre P, et al. Pangenome comparison of Bacteroides fragilis genomospecies unveils genetic diversity and ecological insights. mSystems. 2024;9(7):e0051624; doi: 10.1128/msystems.00516-24.
English J, Newberry F, Hoyles L, Patrick S, Stewart L. Genomic analyses of Bacteroides fragilis: subdivisions I and II represent distinct species. J Med Microbiol. 2023;72(11); doi: 10.1099/jmm.0.001768.
Liu C, Du M-X, Abuduaini R, Yu H-Y, Li D-H, Wang Y-J, et al. Enlightening the taxonomy darkness of human gut microbiomes with a cultured biobank. Microbiome. 2021;9(1):119; doi: 10.1186/s40168-021-01064-3.
Sóki J, Lang U, Schumacher U, Nagy I, Berényi Á, Fehér T, et al. A novel Bacteroides metallo-β-lactamase (MBL) and its gene (crxA) in Bacteroides xylanisolvens revealed by genomic sequencing and functional analysis. J Antimicrob Chemother. 2022;77(6):1553-6; doi: 10.1093/jac/dkac088.
Sóki J, Wybo I, Baaity Z, Stefán G, Jeverica S, Ulger N, et al. Detection of the antibiotic resistance genes content of intestinal Bacteroides, Parabacteroides and Phocaeicola isolates from healthy and carbapenem-treated patients from European countries. BMC Microbiol. 2024;24(1):202; doi: 10.1186/s12866-024-03354-w.
Fogarty EC, Schechter MS, Lolans K, Sheahan ML, Veseli I, Moore RM, et al. A cryptic plasmid is among the most numerous genetic elements in the human gut. Cell. 2024;187(5):1206-22.e16; doi: 10.1016/j.cell.2024.01.039.