VIABILITY OF CANINE’S OVARIAN TISSUE AFTER NONEQUILIBRIUM CRYOCONSERVATION
Main Article Content
Authors
T Nurkenov
LLP EMBRYO TECHNOLOGY LABS, Bogenbay batyr st., 149, 050012, Almaty, Kazakhstan
Abstract
Modern approaches to reproductive biotechnology include the development of effective methods for long-term storage of gametes and reproductive tissues of animals. One of the promising areas is cryopreservation of ovarian tissue, which allows preserving fertility, especially in rare and valuable species. However, the effectiveness of this technology directly depends on the type of cryoprotectant, freezing mode, cooling rate and storage method. Nonequilibrium cryopreservation is a method in which biological samples are exposed to liquid nitrogen vapor without strict software control of cooling. This approach allows for a simpler procedure but requires careful optimization of conditions to preserve tissue viability. The aim of this work is to evaluate the effect of various cryoprotectants and the altitude of the samples (4, 5 and 6 cm above the surface of liquid nitrogen) on the morphological preservation of follicles in the ovarian tissue of dogs after nonequilibrium cryopreservation. A study was conducted to investigate the effect of nonequilibrium cryopreservation in liquid nitrogen vapor on the morphofunctional state of ovarian tissue in dogs. Four cryoprotectors (dimethyl sulfoxide, ethylene glycol, propylene glycol, glycerol) and three temperature regimes (4 cm, 5 cm and 6 cm from the liquid nitrogen level) were used. After thawing, a histological analysis was performed to assess the degree of preservation of different types of follicles. It was found that the best viability indicators were observed when using 1.5 M dimethyl sulfoxide (4 and 6 cm), glycerol (4 cm) and propylene glycol (5 cm). The data obtained are important for the development of effective protocols for cryopreservation of ovarian tissue in dogs in order to preserve the gene pool and reproductive potential.
Keywords
ovarian tissue, dogs, cryopreservation, cryoprotectants, liquid nitrogen vapor, follicles
Article Details
References
The Global Plan of Action for Animal Genetic Resources and the Interlaken Declaration. Rome. - 2007.
Wells D.N. Role of new reproductive methods to support the conservation of animal genetic resources: cloning by nuclear transfer // Farm Animal Genetic Resources, Sheep Trust Conference (British Society of Animal Science), Edinburgh. – 2002.
Andrabi S.M.H., & Maxwell W.M.C. A review on reproductive biotechnologies for conservation of endangered mammalian species // Animal Reproduction Science. – 2007. – Vol. 99. – P. 223–243 // doi.org/10.1016/j.anireprosci.2006.07.002.
Blackburn H.D., Toishibekov Y., Toishibekov M., Welsh C.S., Spiller S.F., Brown M., & Paiva S.R. Genetic diversity of Ovis aries populations near domestication centers and in the New World // Genetica. – 2011. – Vol. 139. – P. 1169–1178 // doi.org/10.1007/s10709-011-9619-4.
Ruane J., & Sonnino A. Biotechnologies for the management of genetic resources for food and agriculture // Advances in Genetics. – 2012. - Vol. 78. - P. 1–167 // doi.org/10.1016/B978-0-12-394394-1.00001-1.
Watson P.F., & Holt W.V. Book review: Cryobanking the genetic resource; wildlife conservation for the future // Cryobiology. – 2003. – Vol. 46. - №.1. – Р. 103–105 // doi.org/10.1016/S0011-2240(03)00003-2.
George M.A., Pickering S.J., Braude P.R., & Johnson M.H. The distribution of β-tubulin in fresh and aged human and mouse oocytes exposed to cryoprotectant // Human Reproduction. – 1996. – Vol. 11. - №. 3. – P. 445–446 // doi.org/10.1093/oxfordjournals.humrep.a019063.
Vincent C., & Johnson M.H. Cooling, cryoprotectants and the cytoskeleton of the mammalian oocyte // Oxford Reviews of Reproductive Biology. – 1992. – Vol. 14. – P. 73–100.
Tucker M.J., Wright G., Morton P.C., & Massey J.B. Birth after cryopreservation of immature oocytes with subsequent in vitro maturation // Fertility and Sterility. – 1998. – Vol. 70. - №. 3. – P. 578–579 // doi.org/10.1016/S0015-0282(98)00217-2.
Tao T., & Del Valle A. Human oocyte and ovarian tissue cryopreservation and its application // Journal of Assisted Reproduction and Genetics. – 2008. – Vol. 25. - №. 7. – P. 287–296 // doi.org/10.1007/s10815-008-9236-z.
Gunasena K.T., Villines P.M., Critser E.S., & Critser J.K. Live births after autologous transplant of cryopreserved mouse ovaries // Human Reproduction. – 1997. – Vol. 12. - №. 1. – P. 101–106 // doi.org/10.1093/humrep/12.1.101.
Gosden R.G., Baird D.T., Wade J.C., & Webb R. Restoration of fertility to oophorectomized sheep by ovarian autografts stored at −196°C // Human Reproduction. – 1994. – Vol. 9. - №. 4. – P. 597–603 // doi.org/10.1093/oxfordjournals.humrep.a138579.
Hovatta O., Silye R., Krausz T., Abir R., Margara R., & Trew G. Cryopreservation of human ovarian tissue using dimethylsulphoxide and propanediol-sucrose as cryoprotectants // Human Reproduction. – 1996. – Vol. 11. - №. 6. – P. 1268–1272 // doi.org/10.1093/oxfordjournals.humrep.a019408.
Parkes A.S. Regeneration of rat ovarian tissue grafted after exposure to low temperature // Proceedings of the Royal Society of London. Series B, Biological Sciences. – 1953. – Vol. 140. - №. 899. – P. 455–470 // doi.org/10.1098/rspb.1953.0002.
Deanesly R. Immature rat ovaries grafted after freezing and thawing // Journal of Endocrinology. – 1954. – Vol. 11. - №. 2. – P. 197–200 // doi.org/10.1677/joe.0.0110197.
Candy C.J., Wood M.J., & Whittingham D.G. Effects of cryoprotectants on the survival of follicles in frozen mouse ovary // Journal of Reproduction and Fertility. – 1997. – Vol. 110. - №. 1. – P. 11–19 // doi.org/10.1530/jrf.0.1100011.
Gook D.A., Osborn S.M., & Johnston W.I. Parthenogenetic activation of human oocytes following cryopreservation using 1,2-propanediol // Human Reproduction. – 1995. – Vol. 10. - №. 3. – P. 654–658 // doi.org/10.1093/oxfordjournals.humrep.a136034.
Gook D.A., Schiewe M.C., Osborn S.M., & Johnston W.I. Intracytoplasmic sperm injection and embryo development of human oocytes cryopreserved using 1,2-propanediol // Human Reproduction. – 1995. – Vol. 10. - №. 10. – P. 2637–2641 // doi.org/10.1093/oxfordjournals.humrep.a135803.
Hovatta O., Silye R., Krausz T., Abir R., Margara R., & Trew G. Cryopreservation of human ovarian tissue using dimethylsulphoxide and propanediol-sucrose as cryoprotectants // Human Reproduction. – 1996. – Vol. 11. - №. 6. – P. 1268–1272 // doi.org/10.1093/oxfordjournals.humrep.a019408.
Boiso I., Veiga A., Tresserra F., & Barri P.N. Ovarian tissue freezing: a promising method for fertility preservation // Reviews in Gynecological and Obstetrical Practice. – 2001. – Vol. 1. - №. 3. – P. 248–252 // doi.org/10.1016/S1471-7697(01)00031-1.
Toishibekov Y.M., Kazybayeva A.S., Assanova Y.A., Nurkenov T.T., & Toishybek D.Y. The effect of various cryoprotective agents and slow cooling rate on viability of goat ovarian tissue // Reproduction, Fertility and Development. – 2021. – Vol. 34. - №. 2. – P. 257–257 // doi.org/10.1071/RDv34n2Ab44.
Salinas-Flores D., et al. Histological assessment of dog ovarian tissue after cryopreservation // Reproduction in Domestic Animals. – 2020. – Vol. 55. - №. 1. – P. 25–32 // doi.org/10.1111/rda.13620.
Gougeon A. Dynamics of follicular growth in the human: a model from preliminary results // Human Reproduction. — 1986. — Vol. 1. — P. 81–87.