<u>Оригинальная статья</u>

УДК 61:75; 575

GENETIC VARIATIONS OF NUTRITION RELATED GENES AND FOOD PREFERENCES IN THE KAZAKHS OF KAZAKHSTAN

^{*}Sikhayeva N.¹, Talzhanov Y¹., Dzharmukanov Zh.¹, Shevtsov A.¹, Zholdybayeva E.¹, Karabayeva R.², Benberin V.², Filipenko M³., Ramankulov Y.¹

¹National Center for Biotechnology,

13/5, Korgalzhyn road, Nur-Sultan, 010000, Kazakhstan

² Medical Center Hospital of President's Affairs Administration of the Republic of

Kazakhstan PI,

E495 Mangilik el av, build 2, Nur-Sultan, 010000, Kazakhstan

³Institute of Chemical Biology and Fundamental Medicine

Novosibirsk, Russia, 8 Lavrentiev Avenue, Novosibirsk, 630090, Russia.

^<u>ksnurgul@gmail.com</u>

ABSTRACT

The density of taste buds, differences in genes encoding receptors, and other factors affect the on perception of taste and further food preferences. This study aimed to evaluate the association between 24 single nucleotide polymorphisms and food preferences in a Kazakh cohort. A total of 400 subjects were recruited from an outpatient clinic and genotyped for 24 polymorphisms previously described as associated with eating behaviour and food preferences in other ethnic groups. Regression analysis was conducted, adjusting for age and sex.

Associations were detected between rs2290550 polymorphism in phospholipase C-B2 (*PLCB2*), rs34160967 polymorphism in taste 1 receptor member 1 (*TASIR1*) gene, and rs860170 polymorphism in *TAS2R16* gene and preferences for beef steak, unleavened bread, and sweet tea or coffee, respectively. There was an association between AA haplotype (*TAS2R38*) and a preference for fried potato. The main results of this study are the detection of associations between nutrition-related genes (*BCMO1*, *PLCB2*, *TRPV1*, *TAS1R1*, and *TAS2R*) and food preferences in a Kazakh population.

Keywords: food preferences; genetic variants; Kazakh cohort, polymorphism

INTRODUCTION

Taste impacts preferences and food consumption and, thus, it may directly affect eating behaviour. The density of taste buds, differences in genes encoding receptors, and other factors affect the on perception of taste and further food preferences. Differences in taste perception and preferences affect food selection, which significantly influences the consumption of nutrients and calories. Humans can differentiate five tastes: sweet, bitter, acid, salty, and umami (savoury), which is described as the taste of glutamate or amino acids and proteins. Studies suggest that preferences for sweet and high-fat foods reduce with high perception of bitter taste [7,10]. This indicates that the

ability to taste bitterness could be connected to the body mass index (BMI), obesity, and risk of cardiovascular diseases, whereas the perception (sensitivity) of sweet taste inversely correlates with BMI [9].

Three widely expressed missense mutations (P49A, A262V, and V296I) were detected in the *TAS2R38* gene, which form haplotypes [4, 1]. (It was demonstrated that two haplotypes of the *TAS2R38* gene affect the perception of bitterness and are significantly associated with the variability of sensitivity to bitterness, preference for saccharose and sweet products, and diabetes mellitus type 2 [14,32]. Bitterness receptor genes *TAS2R5* and *TAS2R16* are substantially associated with alcohol addiction [10,13]. These data suggest that genetic variations in *TAS2R* genes may be involved in the regulation of eating behaviour. Sweet and umami receptors are coded by *taste 1 receptor member (TAS1R)* genes. TAS1R2 and TAS1R3 receptors respond to compounds with sweet taste such as sugar, sweeteners, and certain D-amino acids. TAS1R1 and TAS1R3 receptors may affect individual differences in consumption of saccharose and change the diet ration [8]. Despite their variability, sweet and umami tastes have poor genetic characteristics, and it is necessary to determine the genetic variants responsible for differences in these tastes [10,13,8,24,21,22].

Thus nutrition-related genes may change the sense of individual variability in terms of dietary factors and obesity. Nutrition-related genes have mostly been tested in Caucasian populations and, therefore, it is necessary to investigate these genes in other ethnic groups in further studies.

Material and methods

Study subjects. Subjects of Kazakh ethnicity were randomly selected during annual health check-ups conducted at the XXX. Blood samples from 400 study participants were collected according to the study protocol, which was approved by the Ethics Committee of the XXX (No. 1.18.06.2015).

The food questionnaires (FQ) used to evaluate food preferences were based on a food preference checklist used in the study by Pirastu et al. (2012), which was expanded to include regional foods commonly consumed in Kazakhstan. All foods were known to most subjects, but some of the participants had never tasted certain food items. Such responses were treated as missing data, and liking ratings were used as quantitative variables for statistical analyses. 1). Food preferences with > 20% missing data were excluded from the study analysis.

Each participant was informed of the purpose and methods of the study, and they provided written informed consent before participating. The blood samples of individuals who indicated they had an ancestor who was not Kazakh were excluded from the analysis.

Anthropometric indices including weight, height, waist and hip circumferences (WC and HC, respectively), and blood pressure were measured following a standard protocol. Height and weight were measured with the participants wearing light clothes and without shoes. WC was measured at the midpoint between the iliac crest and lowest rib. Hip circumference was measured to the nearest centimetre at the greatest protrusion of the buttocks, just below the iliac crest. The blood pressure was measured in a sitting position with a mercury sphygmomanometer. BMI was calculated as the individuals' body weight in kilograms divided by the square of his or her height in meters.

Characteristics of study population. A questionnaire-based survey was carried out to evaluate food preferences, and the total sample population consisted of 400 subjects (Table 1).

Parameter	Men	Women
N	103	297
Age, year	30.37 ± 7.68	33.02 ± 10.36
Weight, kg	76.43 ± 15.11	59.70 ± 10.13
Height, cm	175.31 ± 6.65	162.57 ± 5.79
BMI, kg/m ²	24.40 ± 4.97	22.14 ± 3.99
Waist circumference, cm	$91.2\ 5\pm 12.79$	76.59 ± 12.74
Hip circumference, cm	101.34 ± 14.44	95.95 ± 8.01
SBP, mmHg	119.61 ± 9.89	109.40 ± 12.87
DBP, mmHg	75.97 ± 7.48	71.58 ± 9.42

Table 1. Clinical characteristics of randomly sampled Kazakh study population

Genotyping. DNA was extracted from venous whole blood samples using the salting-out method [15]. There were 24 SNPs of nutrition-related genes genotyped using Biosyntec Genotyping kit (http://www.biosyntec.ru, Novosibirsk, Russian Federation). The analyses were conducted according to the manufacturer's standard protocol. Asymmetric real-time PCR genotyping using TaqMan probes was performed in a final volume of 20 μ L containing 10 mM Tris-hydrochloride (HCl, pH 8.9), 55 mM potassium chloride (KCl), 2.5 mM magnesium chloride (MgCl₂), 0.01% Tween 20. 2 mM dNTP, 20-100 ng DNA, 1 unit. act. Klentaq DNA polymerase, and solutions of oligonucleotide primers and probes at concentrations of 0.1 mM and 1 mM depending on the primers. The PCR amplification was run on the following schedule: initial denaturation at 96 °C for 3 min; 55 cycles at 96 °C for 6 s, 60 °C for 6 s, and 72 °C for 6 s; melting curve at the interval 30-77 °C, with a step of 0, 5 °C, time interval, 5 s per step.

Statistical analysis. The statistical analysis was carried out in R (https://www.rproject.org). The correspondence of the distributions of genotype frequencies to the Hardy-Weinberg equilibrium (HWE) was assessed using the χ^2 criterion (Hardy Weinberg v1.6.1). Own script was used to detect minor alleles for each SNP, then their frequencies were calculated, and the genotype data was recorded according to three genetic models (additive, dominant, and recessive). A linear regression analysis was used to detect associations between polymorphic loci and food preferences (R stats package v3.4.4). After Bonferroni correction the statistical significance threshold was calculated as p < 0.000035. However, we chose to report results as p < 0.001 because we intended to repeat studies of known food preferences, and not to make clinical claims. Therefore, the borderline results were also important in this study. We confirmed our findings using repeated linear regression analysis with adjustments for potential confounders. Based on literature research we decided to use age, sex, and BMI as potential confounders. The data from the 1000 Genome Project database (phase 3) were used for the comparative analysis of genotype frequencies among the Kazakh and world populations [31]. A Fisher's exact test was performed to make pairwise comparisons of observed genotype frequencies for the Kazakh population with the available genotype frequencies for other populations (R stats package v3.4.4).

RESULTS

We tested 24 common SNPs that were in HWE. The allele and genotype frequencies of the remaining SNPs for the Kazakh population are summarised in Table 2.

Polymorphism	Gene	a1	a2	MAF	a11	a12	a22
rs2277675	TRPV1	А	G	0.19	232	114	10
rs4595035	TAS2R60	Т	С	0.22	213	125	17
rs1376251	TAS2R50	Т	С	0.47	97	182	77
rs10772397	TAS2R50	Т	С	0.35	147	168	39
rs2227264	TAS2R5	G	Т	0.32	166	151	39
rs2599404	TAS2R47	А	С	0.39	138	159	60
rs71443637	TAS2R43	С	Т	0.44	107	176	65
rs5020531	TAS2R42	Т	С	0.35	118	153	29
rs1404635	TAS2R41	G	А	0.38	144	157	55
rs713598	TAS2R38	G	С	0.5	84	192	81
rs1726866	TAS2R38	С	Т	0.47	96	189	72
rs10772420	TAS2R19	G	А	0.38	136	170	49
rs860170	TAS2R16	А	G	0.35	135	134	40
rs2234233	TAS2R1	С	Т	0.23	214	116	24
rs4920566	TAS1R2	G	А	0.49	89	181	85
rs34160967	TAS1R1	G	А	0.14	82	23	4
rs2290550	PLCB2	G	Т	0.1	276	67	2
rs4988235	MCM6	С	Т	0.1	275	59	6
rs2229642	ITPR3	G	С	0.25	193	146	16

Table 2. Allele frequency and distribution of studied single nucleotide polymorphisms (SNPs)

rs602662	FUT2	G	А	0.3	175	143	36				
rs9939609	FTO	Т	А	0.25	197	135	23				
rs12934922	BCMO1	А	Т	0.28	171	133	26				
rs266729	ADIPOQ	С	G	0.28	172	128	28				
rs1229984	ADHIB	G	А	0.27	192	131	30				
Notes: 1 a1- allele 1; 2 a2- allele 2; 3 maf - minor allele frequency; 4 a11 - homozygous for allele 1; 5 a12 -											
heterozygote; 6 a22 -homozygous for allele 2; 7 na -not applicable, number of missed genotypes											

We also performed a comparative analysis of the differences in genotype frequencies between the Kazakh population and populations represented in the 1000 Genome Project database and divided them into following groups: African (Yoruba in Ibadan, Nigeria; Luhya in Webuye, Kenya; Gambian in Western Divisions in the Gambia; Mende in Sierra Leone; Esan in Nigeria; Americans of African Ancestry in South West USA; African Caribbeans in Barbados), American (Mexican Ancestry from Los Angeles USA; Puerto Ricans from Puerto Rico; Colombians from Medellin, Colombia; Peruvians from Lima, Peru), East Asian (Han Chinese in Beijing, China; Japanese in Tokyo, Japan; Southern Han Chinese; Chinese Dai in Xishuangbanna, China; Kinh in Ho Chi Minh City, Vietnam), European (Utah residents with Northern and Western European ancestry, USA; Toscani, Italy; Finnish, Finland; British in England and Scotland; Iberian, Spain), and South Asian (Gujarati Indian from Houston, Texas; Punjabi from Lahore, Pakistan; Bengali from Bangladesh; Sri Lankan Tamil from the UK; Indian Telugu from the UK). Significant differences in allele frequencies were found between Kazakhs and representatives of other ethnic groups for a large number of SNPs (Table 3). For the African populations, allele frequencies of 22 out of studied 24 SNPs were significantly different from those of the Kazakh population. Allele frequencies of 19 SNPs were significantly different between Europeans and the Kazakhs. For Asian populations, allele frequencies of 11 out of 24 SNPs were significantly different compared to those of the Kazakh population. For American populations, allele frequencies of 16 SNPs were significantly different between the Kazakh and the American populations.

	Fisher's exact test (p-value)																									
SNP s	AC B	AS W	ES N	G W D	LW K	MS L	YRI	CL M	MX L	PEL	PU R	CD X	CH B	CH S	JPT	KHV	CEU	FIN	GBR	IBS	TSI	BE B	GIH	ITU	PJL	ST U
rs22 776 75	2.6 2E- 47	6.6 5E- 24	4.1 1E- 53	NA	2.6 6E- 46	1.5 8E- 47	2.1 1E- 57	0.0 011 78	0.1 852 29	1.8 3E- 09	3.3 3E- 07	0.2 966 12	0.5 487 24	0.6 833 56	0.8 324 05	0.73 798 9	0.00 516 894	0.2 753 077	0.29 940 92	0.0 972 38	0.0 034 48	0.0 005 88	1.1 0E- 06	0.0 524 1	0.4 617 26	0.0 021 03
rs45 950 35	1.3 6E- 10	4.2 9E- 14	1.8 8E- 12	4.2 0E- 09	1.0 8E- 14	1.2 8E- 19	1.3 9E- 09	2.7 9E- 36	3.2 0E- 29	6.0 9E- 52	5.0 8E- 37	8.9 2E- 56	1.7 1E- 55	1.4 3E- 60	3.4 8E- 61	2.73 E-56	4.95 E-21	4.9 7E- 31	4.38 E-25	2.6 5E- 27	1.9 3E- 31	4.0 3E- 42	1.2 3E- 41	7.4 6E- 43	2.7 5E- 34	1.0 7E- 45
rs13 762 51	9.9 2E- 35	5.1 1E- 18	3.0 0E- 32	2.5 8E- 43	2.6 5E- 37	4.8 0E- 37	2.1 3E- 40	0.0 032 6	0.2 902 14	2.8 1E- 05	2.4 1E- 05	1.9 1E- 05	1.2 7E- 09	6.5 8E- 07	8.1 1E- 11	9.21 E-10	1.73 E-06	5.3 5E- 05	2.33 E-07	0.0 001 84	0.0 204 54	0.1 727 82	0.0 044 05	0.7 865 19	0.2 365 29	0.0 011 6
rs10 772 397	5.6 0E- 27	1.7 2E- 14	1.1 1E- 30	1.4 2E- 43	1.1 7E- 31	4.1 6E- 44	1.0 1E- 28	0.8 528 43	0.5 162 98	0.1 000 47	0.0 004 26	0.2 359 52	0.0 039 5	0.0 427 94	0.0 004 90	0.00 290 7	0.38 109 152	0.3 257 373	0.82 509 89	0.6 630 31	0.8 136 71	0.9 113 53	0.2 618 54	0.1 347 49	0.2 180 98	0.1 334 54
rs22 272 64	0.3 452 64	0.1 683 66	2.5 0E- 05	4.6 6E- 06	0.0 178 73	1.1 2E- 05	0.0 337 78	7.6 8E- 07	4.1 4E- 08	1.7 7E- 11	3.0 0E- 06	1.5 7E- 20	2.2 7E- 23	1.4 4E- 20	1.1 8E- 19	4.47 E-16	0.00 276 534	0.0 036 979	0.02 740 856	5.2 5E- 07	0.0 001 29	0.0 005 39	0.0 406 39	0.0 371 48	0.0 290 63	0.0 049 49
rs25 994 04	0.3 011 91	0.9 313 57	3.8 8E- 01	8.2 1E- 01	0.2 502 39	6.7 8E- 02	0.4 219 99	0.3 089 32	0.2 570 33	0.0 001 29	0.7 682 32	6.2 0E- 06	3.2 3E- 06	3.4 6E- 05	1.9 8E- 06	1.80 E-09	0.00 133 976	1.6 2E- 05	0.00 024 101	0.1 019 41	0.3 897 97	0.0 300 82	7.0 0E- 08	0.1 320 62	0.0 063 74	1.1 7E- 05
rs71 443 637	4.0 2E- 29	1.1 4E- 13	4.6 1E- 38	8.5 7E- 37	1.3 0E- 35	1.2 3E- 38	3.6 4E- 36	1.5 7E- 09	2.6 5E- 10	7.7 2E- 10	1.1 8E- 05	1.0 4E- 21	2.3 2E- 31	5.0 8E- 28	1.1 7E- 33	2.21 E-24	3.79 E-08	2.9 7E- 20	5.92 E-11	9.6 6E- 09	2.2 0E- 08	6.7 0E- 12	1.0 3E- 08	8.6 4E- 15	1.4 1E- 09	2.4 2E- 17
rs50 205 31	7.4 6E- 06	1.6 7E- 01	1.1 4E- 09	1.0 9E- 09	2.8 2E- 10	1.5 5E- 14	0.0 001 92	2.7 8E- 18	3.6 8E- 09	1.7 1E- 10	3.9 5E- 06	6.4 9E- 19	7.7 0E- 26	2.0 9E- 21	1.6 1E- 27	1.68 E-26	1.75 E-10	1.8 2E- 21	1.55 E-13	2.1 9E- 11	1.7 5E- 13	6.3 7E- 12	1.1 2E- 17	2.0 3E- 08	2.0 8E- 15	1.2 1E- 20
rs14	1.3	3.8	1.3	4.0	1.6	9.0	5.4	0.0	0.1	0.1	0.0	3.4	0.0	0.7	0.3	0.01	0.30	2.6	0.00	0.0	0.0	0.2	0.0	0.0	0.1	0.0

Table 3. Comparative analysis of genotype frequencies between the Kazakh population (present study) and other ethnic populations (1000 Genome Project data)

046	9E-	4E-	6E-	4E-	9E-	2E-	7E-	106	227	946	029	7E-	783	514	481	109	104	9E-	447	252	016	338	537	384	584	224
35	20	09	29	35	25	26	29	62	41	72	21	07	31	71	46	7	423	05	346	5	2	44	07	08	88	13
rs71	1.7	4.5	6.2	4.1	7.5	3.7	0.5	0.2	0.0	4.1	0.1	3.9	1.8	1.6	0.0		0.00	0.0	0.01	0.2	0.1	6.8	0.0	7.4	2.8	5.3
359	7E-	8E-	1E-	8E-	1E-	2E-	336	371	013	0E-	929	6E-	9E-	6E-	751	1.74	826	034	747	435	395	4E-	236	7E-	1E-	6E-
8	01	01	01	02	01	01	49	12	42	18	72	07	05	05	92	E-09	281	022	891	2	96	06	64	06	05	07
rs17	1.1	2.4	3.3	1.2	7.3	3.5	0.0	0.0	0.0	5.0	0.0	1.4	0.0	0.0	0.2			0.0	0.01	0.6	0.5	2.1	0.0	5.2	8.9	9.6
268	3E-	7E-	8E-	0E-	2E-	7E-	001	378	030	0E-	005	8E-	004	004	292	1.76	0.02	003	755	533	452	8E-	145	4E-	4E-	1E-
66	03	04	04	01	05	02	6	88	51	18	04	05	65	87	39	E-07	552	621	516	44	27	06	19	06	05	09
rs10	6.0	9.6	7.7	9.4	6.3	1.2	0.6	0.2	0.2	3.5	0.5	1.8	1.0	5.0	2.6		0.00	1.0	0.00	0.3	0.1	0.0	2.5	0.3	0.0	4.9
772	1E-	3E-	1E-	4E-	2E-	8E-	580	786	432	1E-	083	1E-	5E-	4E-	0E-	4.14	011	3E-	015	370	677	217	2E-	752	275	9E-
420	01	01	01	01	01	01	88	64	72	05	49	05	05	05	06	E-09	591	06	348	83	11	66	07	35	42	05
rs86	1.2	1.0	4.0	6.5	2.2	3.4	1.4	0.0	0.5	8.7	0.0	0.0	0.0	0.0	0.0	0.00	0.05	0.5	0.14	0.9	0.4	0.6	0.7	0.9	0.5	0.7
017	1E-	4E-	9E-	5E-	3E-	8E-	3E-	080	824	3E-	091	012	042	069	658	016	489	099	914	624	610	071	465	490	369	528
0	10	07	19	27	17	18	24	03	44	05	66	12	32	59	65	8	3	723	526	83	22	69	84	84	73	15
rs22	8.0	2.3	5.8	2.4	1.6	9.9	2.2	0.0	0.0	5.5	0.0	4.9	0.0	0.0	0.0		0.12	0.0	0.08	0.0	0.0	0.2	0.2	0.1	0.5	0.0
342	0E-	2E-	6E-	8E-	7E-	7E-	9E-	024	921	5E-	260	7E-	095	038	021	1.34	434	554	054	059	010	968	663	531	135	369
33	16	06	12	09	08	11	19	51	1	05	61	05	49	18	92	E-06	658	792	332	64	17	19	96	65	08	19
rs49	8.5	7.6	2.0	1.2	2.1	4.2	7.1	4.7	0.0	7.1	0.7	0.0	0.0	0.3	0.0	0.01		0.1		0.0	0.0	0.6	0.1	0.6	0.1	0.6
205	6E-	8E-	4E-	7E-	4E-	5E-	7E-	9E-	010	0E-	157	153	031	312	330	112	7.95	046	3.32	012	017	042	267	641	489	537
66	11	05	13	14	15	16	14	05	26	08	79	78	57	61	630	1	E-05	229	E-06	05	88	53	9	74	27	18
rs34	9.5	3.6	3.4	1.9	1.5	1.8	0.0	0.0	0.0	6.7	0.4	0.0	6.3	0.0	2.1	0.00	0.46	0.4	0.64	0.4	0.0	0.6	0.4	0.8	0.0	0.9
160	1E-	0E-	0E-	3E-	4E-	5E-	034	222	821	8E-	977	003	7E-	003	3E-	436	012	042	979	873	169	163	705	060	189	278
967	02	01	03	03	03	01	59	62	74	05	8	56	05	6	08	0	44	985	24	69	49	11	31	44	45	08
rs22	3.6	3.4	1.5	4.1	2.1	8.9	1.0	0.0	0.1	0.3	0.0	1.0	1.7	7.1	0.0		0.00	0.0		1.4	0.0	0.4	0.1	0.3	0.3	0.0
905	0E-	0E-	5E-	1E-	4E-	5E-	3E-	001	478	098	137	1E-	2E-	4E-	300	2.99	066	003	5.25	3E-	001	001	463	546	971	218
50	13	07	13	19	06	14	09	06	04	4	87	06	06	09	99	E-05	21	917	E-06	05	59	89	98	37	5	8
rs49	3.9	8.9	1.0	1.9	1.0	9.0	1.9	5.7	0.0	0.8	0.0	2.0	6.0	3.1	3.9			9.6		7.6	0.7	0.2	0.1	0.1	1.3	0.0
882	1E-	5E-	6E-	8E-	6E-	9E-	2E-	4E-	002	383	002	8E-	1E-	1E-	8E-	1.06	9.72	0E-	1.01	0E-	037	515	362	496	7E-	761
35	01	02	07	06	07	07	08	09	37	65	67	07	08	08	08	E-07	E-52	38	E-45	23	94	42	55	91	06	47
rs22	6.5	1.0	7.6	1.2	4.3	3.6	3.1	0.0	0.0	0.0	2.8	2.9	1.2	3.5	0.0			7.8		1.4	1.7	0.0	0.1	0.2	0.0	0.1
296	0E-	2E-	4E-	7E-	0E-	3E-	4E-	005	682	591	4E-	2E-	6E-	6E-	140	4.61	3.54	9E-	1.15	9E-	5E-	002	609	620	114	896

42	38	26	36	52	39	38	46	71	69	73	11	07	05	08	57	E-09	E-13	05	E-17	14	14	27	71	45	55	48
rs60	8.4	6.1	8.4	2.1	2.2	7.9	3.9	0.0	0.4	4.3	2.7	1.8	4.3	4.7	9.0			0.3		0.0	4.4	0.2	0.3	0.1	0.0	0.0
266	0E-	1E-	3E-	1E-	3E-	6E-	5E-	819	884	4E-	0E-	7E-	3E-	9E-	6E-	5.06	2.47	213	1.94	004	8E-	045	835	949	059	335
2	07	05	10	05	03	02	10	07	15	05	13	23	21	26	26	E-23	E-11	723	E-05	79	06	42	69	54	91	04
rs99	4.8	3.5	1.4	2.8	1.8	3.9	7.8	0.0	0.6	4.0	0.0	0.0	0.0	0.0	0.0	0.77		0.0	0.00	0.0	9.7	0.5	0.9	0.3	0.7	0.0
396	1E-	7E-	1E-	7E-	5E-	8E-	1E-	634	806	2E-	042	090	065	005	551	855	2.48	002	164	009	3E-	771	666	421	251	577
09	09	05	07	07	13	10	12	63	75	07	83	4	96	66	95	498	E-06	768	731	9	08	14	15	69	19	29
rs12	6.0	0.0	1.6	5.8	1.9	2.6	6.4	0.0	0.6	0.4	0.1	0.0	9.6	2.4	0.0		0.00	4.2	0.00	7.7	2.2	0.3	0.0	0.1	0.3	0.9
934	3E-	044	3E-	3E-	0E-	0E-	2E-	032	245	577	228	001	0E-	3E-	002	4.62	898	5E-	086	9E-	5E-	125	249	239	196	389
922	022 05 20 06 17 09 07 11 81 56 85 79 96 05 06 23 E-07 185 06 499 06 05 89 3 87 48 78																									
rs26	9.8	5.4	1.1	4.5	7.8	3.9	1.0	0.2	0.5	0.7	0.0	0.0	0.1	0.4		0.29	0.76	0.1	0.24	0.4	0.3	0.4	0.4		0.8	0.9
672	1E-	5E-	8E-	0E-	3E-	4E-	7E-	914	572	780	353	524	056	715	1.0	667	779	969	922	471	505	827	545	0.8	348	111
9																										
rs12	8.1	7.7	1.8	3.2	1.8	7.8	3.3	2.3	2.4	1.0	5.4	4.2	2.5	3.3	1.3			1.8		2.7	6.2	7.4	7.5	9.4	1.1	2.3
299	2E-	2E-	0E-	3E-	0E-	8E-	2E-	4E-	8E-	2E-	0E-	4E-	3E-	1E-	1E-	7.50	3.28	0E-	2.98	0E-	2E-	9E-	1E-	9E-	0E-	4E-
84	18	14	21	24	21	19	23	08	05	15	11	17	26	31	29	E-19	E-17	21	E-18	10	12	15	16	18	12	20
Notes	: YRI - `	Yoruba	in Iba	dan, N	ligeria;	; LWK ·	- Luhy	a in W	ebuye,	Kenya	; GWD) - Gan	nbian i	n West	ern Div	visions i	n the G	ambia;	MSL - N	Vende	in Sier	ra Leo	ne; Esa	an in N	igeria;	
ASW -	Ameri	cans o	f Africa	an Anc	cestry i	in Sout	h Wes	t USA;	ACB -	Africar	n Carib	beans	in Barl	bados;	MXL -	Mexica	n Ances	try fror	n Los A	ngeles	USA; F	VR - P	uerto	Ricans	from	
Puerto	o Rico;	CLM -	Colom	bians	from N	∕ledell	in, Col	ombia;	PER -	Peruvi	ans fro	m Lim	a, Peru	ı; CHB	- Han (Chinese	in Beijiı	ng, Chir	na; JPT ·	- Japan	ese in	Tokyo	, Japan	; CHS ·	- South	iern
Han C	hinese	; CDX -	Chine	se Dai	in Xisł	nuangt	banna,	China;	KHV -	Kinh iı	n Ho C	hi Minl	h City,	Vietna	m); CE	U - Utal	n reside	nts wit	h North	iern an	d Wes	tern E	uropea	in ance	estry, L	JSA;
																	rati Indi									
Pakist	an; BEl	B - Ben	ıgali fro	om Ba	nglade	sh; ST	U - Sri	Lankar	n Tamil	from	the UK	; ITU -	Indiar	n Telug	u from	the UK	; NA: da	ita not	availab	le fron	the 1	000 Ge	enome	Projec	:t	

Participants were requested to evaluate certain products using a scale of 9 to 0 (9 - like extremely, 7 - like, 5 - neutral, 3- do not like but had to consume, 1 - dislike, 0- never tasted). The regression analysis was used to detect genetic associations with taste preferences. Table 4 shows results of regression analysis.

Polymorphism/ gene	Phenotype	Beta	<i>p</i> -value	Ν	Model						
rs1726866 TAS2R38	Black pepper	-0,731	0,00056	341	REC						
rs2227264 <i>TAS2R5</i>	Sorbet	-1,203	0,00094	341	REC						
rs2277675 <i>TRPV1</i>	Tonic	-0,871	0,00098	338	ADD						
rs2290550 PLCB2	Beef steak	-6,677	7,50133E-07 [*]	330	REC						
rs34160967 TAS1R1	Unleavened bread (lavash, flat cake)	-1,082	0,00021	107	ADD						
rs34160967 TAS1R1	Unleavened bread (lavash, flat cake)	-1,219	0,00067	107	DOM						
rs4595035 TAS2R60	Sea products	-2,441	0,00098	340	REC						
rs860170 TAS2R16	Tea or coffee	1,331	0,00021	293	REC						
	Notes: 1 <i>Beta</i> – allele effect direction; 2 Significance level p = 0,001; 3 *- Bonferroni correction; 4 N – number of samples; 5 REC – recessive model, ADD – additive model, DOM – dominant model										

Table 4. Significant associations between studied SNPs and food preferences

According to Table 4, eight associations were found between polymorphisms of experimental genes and taste preferences in various genetic models. The strongest association was between rs2290550 in *PLCB2* gene and preference for beef steak. An association was found between the recessive model and negative coefficient beta, indicating that homozygous carriers of the alternative allele (TT) preferred to eat less beef than GG and GT carriers did. It is worth noting that this association was the only one that passed the Bonferroni correction. The rest of the results showed borderline associations that were also interesting to our study. The rs2227264 polymorphism was associated with a preference for sorbet with a negative correlation in the recessive model, rs2277675 polymorphism was associated with a preference for "black pepper" with a negative correlation in the recessive model. The *TAS1R1* gene polymorphism (rs34160967) was an association with a low preference for unleavened bread in the additive and dominant models. The rs4595035 polymorphism was negatively associated with a preference for seafood, and rs860170 polymorphism was positively associated with preference to tea or coffee.

These results were reported without any adjustment for potential confounders. However, based on the stepwise regression analysis we concluded that age and sex could be potential confounders for food taste preferences (data is not shown). Therefore, we repeated the regression analysis with adjustments for age and sex, and the results are shown in Table 5.

potential comounders					
Polymorphism/ gene	Phenotype	Beta	<i>p</i> -value	Ν	Model
rs12934922 BCMO1	Fresh-water fish: bream, pike perch, pike, etc.	-1.413	00.00092	306	REC
rs1726866 <i>TAS2R38</i>	Oatmeal	-0.548	0.00069	330	ADD
rs2290550 PLCB2	Beef steak	-6.954	2.76757E-07*	320	REC
rs34160967 TAS1R1	Unleavened bread (lavash, flat cake)	-1.168	0.00014	101	ADD
rs34160967 TAS1R1	Fried potatoes	-1.306	0.00023	96	ADD
rs34160967	Unleavened bread	-1.329	0.00048	101	DOM

 Table 5. Significant associations between studied SNPs and food preferences after adjustment for potential confounders

TAS1R1	(lavash, flat cake)									
IASIKI	(lavasli, liat cake)									
rs860170 TAS2R16	Tea or coffee	1.317	0.00018	285	REC					
Notes: 1 Beta - alle	le effect direction; 2 S	ignificance leve	el p = 0.001; 3 *	- Bonferroni co	orrection; 4 N –					
number of samples; 5 REC – recessive model, ADD – additive model, DOM – dominant model.										

As is evident from Table 4, adjusting for potential confounders revealed the associations between rs2290550 polymorphism in *PLCB2* and a preference for beef steak; rs34160967 polymorphism in *TAS1R1* gene and preference for unleavened bread; and rs860170 polymorphism in *TAS2R16* gene and preference for tea or coffee. However other associations were not statistically significant (rs1726866, rs2227264, rs2277675, and rs4595035). Except for rs860170, all polymorphisms showed negative associations. It should be noted that the association between the rs2290550 polymorphism and a "beefsteak preference" phenotype passed the Bonferroni correction. The rs860170 polymorphism in the *TAS2R16* gene was positively associated with "tea or coffee" preference. In addition, after adjustment for potential confounders, supplementary associations were revealed between rs12934922 polymorphism in *BCMO1* and "fish"; rs1726866 polymorphism in *TAS2R38* and "oatmeal"; and rs34160967 polymorphism in *TAS1R1* and "fried potato" (Table 6).

Lable 0. 1 able	e status of TASZASC	maprotypes			
Haplotype	Designation in terms of the study	P49A rs713598	V262A rs1726866	[1296V]	Taste status
AV[I]	AV	G	Т	[A]	Non-tasters, if homozygote
AA[V]	AA	G	С	[G]	Small effect on non-tasters status, when homozygote is AVI/AAV
PV[I] PA[V]	PV PA	C C	T C	[A] [G]	Unknown Tasters, if homozygote or heterozygote

 Table 6. Taste status of TAS2R38 haplotypes

Then, regression analysis was carried out to detect associations between BMI and the studied SNPs, and the association results did not meet the assigned level of significance (p = 0.001, data not shown).

Two SNPs (rs713598 and rs1726866) were used to construct haplotypes. We observed that the frequencies for haplotypes CC, GT and GC were 49.52%, 45.82% and 4.11% accordingly. The haplotype test revealed that GC haplotype is associated with higher preference for fried potato (p = 0.00034), while CC haplotype was related to lower distaste for bacon (Table 7)

Phenotype	Model	rs713598	rs1726866	Haplotypes	Haplo index	Frequenc y	<i>P</i> -value
Fried potato	REC	G	С	AA	3.58	0.04	0.00034
Note: REC - rece	essive model						

DISCUSSION

Kazakhs are a Turkic-speaking, native population of Kazakhstan. They comprise a significant population in contiguous areas in China, Russia, Uzbekistan, Turkmenistan, Kyrgyzstan, and Mongolia. It is well known that meals are important elements of material culture, being the carrier of ethnic specifics. The historically formed food system of Central Asian nomads is based on a balance of meal and milk products slightly supplemented with plant products (wild and cultivated plants and vegetables), hunting and fishing products, which were not always available to all groups of the nomadic population.

History clearly shows that various cultures have certain food systems that were developed and established based on local conditions and the availability of certain food items. For instance, coastal populations obviously mainly consumed fish and cattle farmers preferred meat. However, all these differences have been subject to adaptation and have been modified by outside societal influences. Objective practices have been established as a result of changes in lifestyle, globalisation, and urbanisation. Thus, universal food items such as salads, yoghurts, snacks, and fast food, have gradually become part of the daily dietary lifestyle of Kazakhs, particularly those who live in big cities.

A number of studies based on historical and genetic data have suggested that the Kazakh population was formed as a result of admixture of European and Asian populations [27]. Comparative analysis of allelic frequencies of the studied SNPs showed significant differences between the Kazakh population and the majority of other population groups from the 1000 Genome project database. These results indicate that the genetic profile of the Kazakh population has its own unique identity in terms of the studied variants.

Currently, many genes have polymorphisms that are associated with the development of metabolic disorders. It has been determined that food components can cause epigenetic changes in humans [3]. In addition, many studies have demonstrated the association of certain genes related to adiposis and diabetes mellitus type 2 with certain food items [16]. The gustatory system regulates perception, and five different types of taste receptors have been identified: sweet, bitter, acid, salty, and umami. Recent studies indicate that fat could be the sixth taste modality [2]. It is commonly known that sweet taste indicates the caloric content of food and umami perception allows the identification of foods with high protein content. Furthermore, salty taste is assumed to indicate the level of sodium and other mineral substances in the organism while an acid taste safeguards against the consumption of toxic or poisonous compounds and is considered a warning of the presence of harmful compounds. Certain products such as fruits and vegetables contain some bitter compounds, which could be phytonutrients. Diets with a high content of phytonutrients contribute to low cardiovascular and cancer risks. Individuals with an intensive perception of bitter compounds would avoid consuming bitter foods, thus increasing their risk of these diseases [18].

Food preference assessment is used for the evaluation of penchants or antipathy to certain food items. Food preferences are influenced by many factors such as organoleptic features (taste, texture, smell, and appearance), and individual factors, namely age, sex, ethnic background, BMI, and health condition [21, 22, 18]. (Taste varies both within and between populations, and this could be influenced by genetic variants of taste receptor families [10, 32, 13, 8, 29, 24 28, 12 19, 6, 34, 11].

The strongest association in this study was detected between the phospholipase C-B2 (*PLCB2*) gene and a low preference for beef ($p = 2.76757E-07^*$). PLC β 2 is expressed in a subset of receptor cells in the taste buds and is involved in the transduction of sweet, bitter, and umami stimuli. This gene is also expressed in olfactory epithelia, particularly in cells that use phosphatidylinositide signal transduction and comprise nearly 5% of all olfactory cells [11]. It should be noted that a negative association between rs2290550 polymorphism and a "beefsteak preference" phenotype was proven after adjustment for age and sex in the recessive model. The negative correlation indicates that a less frequent allele is related to low preference for the tested food. It is important to note that meat plays a major role in Kazakh food culture. Therefore, many members of the Kazakh population would be expected to have the G allele, making them more susceptible to liking beef.

The rs34160967 polymorphism of the TASIR1 gene is associated with a low preference to unleavened bread and fried potatoes. TASIR genes encode heterodimeric receptors that mediate umami (hTAS1R1 + hTAS1R3) and sweet (hTAS1R2 + hTAS1R3) tastes. According to a previous study by Rawal *et al.* [25], polymorphism of the TASIR1 gene is associated with differences in taste intensity. Our results demonstrated a negative association of this polymorphism with unleavened bread. In addition, GNAT3 gene is highly coexpressed with TASIR and a gene product, i.e. alpha G protein subunit, signal taste molecule, is involved in sweet, bitter, and umami transduction. Recently Choi *et al.* [5] showed that TASIR genes modulate the perception of sweet and umami tastes and regulating metabolism. These genes showed significant association of their polymorphisms with eating behaviour and susceptibility to stomach cancer among Korean men. The association between TAS1R and fried potatoes cannot be easily explained. Functional studies would be required to clarify the results.

The association between rs2277675 (transient receptor potential cation channel subfamily V member 1 [*TRPV1*] polymorphism and preference to tonic was detected. The *TRPV1* gene encodes an ion channel that is activated by various chemical stimuli, such as capsaicin and active chilli ingredients, certain lipids. *TRPV1* transcription product participates in various biological processes, including regulating heart rate, mechanical and thermal hyperalgesia, and psychic anxiety [11]. Studies suggest that this gene is responsible for the metallic taste of sweeteners, or at least the antipathy to sweeteners [26]. Most tonics include sweeteners, and the results agree with the global data. However, after adjustment for age and sex, the association did not achieve the significance level (p > 0,001).

Sweet, umami, and bitter substances activate various G protein-coupled receptors (GPCR). For example, receptor cells expressing T2R receptors of the GPCR family are required for the perception of bitter compounds. Currently, genomic databases provide a list of 43 *TAS2R* genes that determine bitter taste [13].

The results showed that a polymorphism (rs2227264) in the *TAS2R5* gene was negatively associated with sherbet; a polymorphism (rs860170) in *TAS2R16* gene was positively associated with a preference for tea and coffee; and polymorphism (rs4595035) in *TAS2R60* gene was negatively associated with a preference for seafood. *TAS2R16* gene has also been associated with alcohol addiction in other

studies [33]. These data prove that the mentioned genetic variants are involved in the regulation of eating behaviour.

TAS2R38 gene codes a seven-transmembrane G protein-coupled receptor that controls the ability to taste glucosinolates, a family of bitter-tasting compounds. *TAS2R38* gene analysis determines the level of perception of bitter tastes. Different grade of sensitivity may affect the selection of certain food items. Many natural antioxidants and drugs have bitter tastes. Our research showed that rs1726866 polymorphism was associated with antipathy to black pepper in the recessive model; however, after corrections for age and sex, a statistically significant association was observed between the polymorphism and antipathy to oatmeal in the additive model. Other studies have also proven the association of *TAS2R38* gene polymorphism with a bitter taste, namely vegetables in the *Brassica* family of plants [10]. According to studies bitter taste is positively associated with cream or high-fat milk.

There are three missense mutations that result in three replacements of amino acids in P49A, A262V, and V296I codons. These polymorphisms form several haplotypes - PAV (PTC-phenylthiocarbamide sensitive allele) and AVI (PTC-insensitive allele) that are widespread among them. In addition, bitter taste, sex, and creamy consistency are considered significant predictors of preference for high-fat products [18]. Thus, our results showed a positive association between the AA haplotype with a preference for fried potatoes. No statistically significant association was observed between the *TAS2R38* gene haplotypes and BMI. These results agree with those of other studies that did not reveal associations between the *TAS2R38* gene haplotypes and BMI [30] while another study proved that PTC phenotypes were associated with BMI and waist circumference (WC) and high-risk factors of cardiovascular diseases [18].

Some limitations of this study should be acknowledged. Only a limited number of SNPs (24) could be analysed in our cohort, and a relatively limited sample population of Kazakhs was investigated. Another possible limitation of our study might be the fact that no Bonferroni correction was applied to avoid a type 1 error due to multiple comparisons. If Bonferroni's correction was applied to *p*-values obtained in our study, the thresholds of significance for each comparison would be 0.000035. After the correction, only the rs2290550 polymorphism would have been associated with low preference for "beefsteak".

CONCLUSION

The main results of this study were the detection of associations between nutrition-related genes (*BCMO1*, *PLCB2*, *TRPV1*, *TAS1R1*, and *TAS2R*) and food preferences. Many studies have proved the existence of other factors affecting the selection of food items, which may negatively or positively influence health, such as biological (other candidate genes), environmental, and socio-cultural factors.

Funding

This studywas supported by the Ministry of Education and Science of the Republic of Kazakhstan, grant number 0113RK00299

REFERENCES

1. Bachmanov A.A., Beauchamp G.K. Taste Receptor Genes. Annu Rev Nutr.,2007, vol.27, pp.389-414.10.1146/annurev.nutr.26.061505.111329http://dx.doi.org/doi:

2. Besnard P., Passilly-Degrace P., Khan N. Taste of fat: a sixth taste modality? *Physiol Rev*, 2016, vol. 96, no. 1, pp.151-76. http://dx.doi.org/10.1152/physrev.00002.2015

3. Bishop K., Ferguson R. The Interaction between Epigenetics, Nutrition and the Development of Cancer. *Nutrients*, 2015. vol.7, no. 2, pp.922-47. http://dx.doi./10.3390/nu7020922

4. Chandrashekar J., Mueller K.L., Hoon M.A., <u>Adler E., Feng L., Guo W., Zuker</u> <u>C.S., Ryba N.J.</u> T2Rs function as bitter taste receptors. *Cell*, 2000, vol. 100, no.6, pp. 703-11. http://dx.doi.org <u>10.1016/s0092-8674(00)80706-0</u>

5. Choi J.-H., Lee J., Choi I.J., Kim Y.-W., Ryu K.-W., Kim J. Variations in TAS1R Taste Receptor Gene Family Modify Food Intake and Gastric Cancer Risk in a Korean Population. <u>*Mol Nutr Food Res.*</u>, 2016, vol. 60, no. 1124, pp.2433-45. http://dx.doi.org 10.1002/mnfr.201600145

6. Corella D., <u>Peloso G., Arnett D.K., Demissie S., Cupples L.A., Tucker K., Lai</u> <u>C.Q., Parnell L.D., Coltell O., Lee Y.C., Ordovas J.M.</u> APOA2, dietary fat, and body mass index: replication of a gene-diet interaction in 3 independent populations. *Arch Intern Med*, 2000, vol.169, no.18, pp. 1897-906. http://dx.doi.org: /10.1001/archinternmed.2009.343

7. Duffy V.B., Bartoshuk L.M. Food acceptance and genetic variation in taste. J Am Diet Assoc, 2000, vol.100, no. 6, pp.647-55. http://dx.doi.org:<u>10.1016/S0002-8223(00)00191-7</u>

8. Eny K.M., Wolever T.M., Corey P.N., El-Sohemy A. Genetic variation in TAS1R2 (Ile191Val) is associated with consumption of sugars in overweight and obese individuals in 2 distinct populations. *The American journal of clinical nutrition*, 2010, vol.92, no. 6, pp. 1501-1510. http://dx.doi.org: <u>10.3945/ajcn.2010.29836</u>

9. Goldstein G.L., Daun H., Tepper B.J. Adiposity in middle-aged women is associated with genetic taste blindness to 6-npropylthiouracil. *Obes Res.*, 2005. vol.13, no. 6, pp.1017-23. http://dx.doi.org: <u>10.1038/oby.2005.119</u>

10. Grimm E.R., Steinle N.I. Genetics of eating behavior: established and emerging concepts. *Nutrition Reviews*, 2011, vol.69, no. 1, pp.52-60. http://dx.doi.org:10.1111/j.1753-4887.2010.00361.x

11. Ignatieva E.V., Afonnikov D.A., Rogaev E.I., Kolchanov N.A. Genes controlling eating behavior and human body weight, and their functional and genomic characteristics. *Vavilov journal of genetics and selection*, 2014, vol.18, no. (4/2), pp. 9. [in Russian].

12. Junyent M., Parnell L.D., Lai C.Q., Lee Y.C., Smith C.E., Arnett D.K., Tsai M.Y., Kabagambe E.K., Straka R.J., Province M., An P., Borecki I., Ordovás J.M. Novel variants at KCTD10, MVK, and MMAB genes interact with dietary carbohydrates to modulate HDL-cholesterol concentrations in the Genetics of Lipid Lowering Drugs and Diet Network Study. *Am J Clin Nutr.*, 2009, vol.90, no. 3, pp.686-94. http://dx.doi./10.3945/ajcn.2009.27738

13. Mglinets V.A. Taste receptors. *Successes of modern biology*, 2015, vol.135, no.2, pp.34-51.

14. Mennella J.A., Pepino M.Y., Reed D.R. Genetic and environmental determinants of bitter perception and sweet preferences. *Pediatrics*, 2007, vol.115, pp.216-222. http://dx.doi./ 10.1542/peds.2004-1582.

15. Miller S., Dykes D., Polesky H. A simple salting out procedure for extracting DNA from human nucleated cells. *Nucleic Acids Res.*, 1988, vol.16, pp.1215. http://dx.doi 10.1093/nar/16.3.1215.

16. Misnikova I.V. The role of nutrigenomics in the correction of metabolic disorders. *Clinical medicine*, 2015, vol.1, pp.42-45. [in Russian].

17. Ng M., <u>So W.Y., Lam V.K., Cockram C.S., Bell G.I., Cox N.J., Chan J.C.</u> Genome-wide Scan for Metabolic Syndrome and Related Quantitative Traits in Hong Kong Chinese and Confirmation of a Susceptibility Locus on Chromosome 1q21-q25. *Diabetes*, 2004, vol.53, no.10, pp.2676. http://dx.doi./ <u>10.2337/diabetes.53.10.2676</u>

18. Ooi S.-X., Lee P.L., Say H-Y. Bitter receptor gene (TAS2R38) P49A genotypes and their associations with aversion to vegetables and sweet/fat foods in Malaysian subjects. *Asia Pac J Clin Nutr.*, 2010, vol.19, no.4, pp.491-8. PMID: 21147709

19. Ordovas J.M., <u>Corella D., Demissie S., Cupples L.A., Couture P., Coltell</u> <u>O., Wilson P.W., Schaefer E.J., Tucker K.L.</u> Dietary fat intake determines the effect of a common polymorphism in the hepatic lipase gene promoter on high-density lipoprotein metabolism: evidence of a strong dose effect in this gene-nutrient interaction in the Framingham Study. *Circulation*, 2002, vol.10, pp.2315-21. http://dx.doi :10.1161/01.cir.0000036597.52291.c9

20. Orynbayeva G. Particularity of nomadic and seminomadic economy of Kazakhs in arid regions (80s of XIX – XX). *Edu.e-history.kz*: Accessed 5 May, 2016. [in Russian].

21. Pirastu N., Kooyman M., Traglia M., Robino A., Willems S.M., Pistis G., Adamo P., Amin N., Eustacchio A., Navarini L., Sala C., Karssen L.C., Duijn C., Tonolo D., Gasparini P. Association analysis of bitter receptor genes in five isolated populations identifies identifies a significant correlation between *TAS2R43* variants and coffee liking. *PlosOne*, 2014, <u>http://dx.doi.org/10.1371/journal.pone.0092065</u>.

22. Pirastu N., Kooyman M., Traglia M., Robino A., Willems S.M., Pistis G., Amin N., Sala C., Karssen L.C., Duijn C., Tonolo D., Gasparini P. A Genome-Wide Association Study in isolated populations reveals new genes associated to common food likings. *Rev Endocr.*, 2016, vol.17, pp.209-219, <u>http://dx.doi.org/10.1007/s11154-016-9354-3</u>

23. Pirastu N., Robino A., Lanzara C., Athanasakis E., Esposito L., Tepper B.J., Gasparini P. Genetics of Food Preferences: A First View fromSilk Road Populations. *Journal of Food Science*, 2012, vol.1, pp.478-88, <u>http://dx.doi.org/10.1111/j.1750-3841.2012.02852.x</u>

24. Razquin C., <u>Alfredo Martinez J., Martinez-Gonzalez M.A., Corella D., Santos</u> J.M., <u>Marti A</u>. The Mediterranean diet protects against waist circumference enlargement in 12Ala carriers for the PPARgamma gene: 2 years' follow-up of 774 subjects at high cardiovascular risk. *Br J Nutr.*, 2009, vol.102, pp.672-679. <u>http://dx.doi.org/</u> 10.1017/S0007114509289008

25. Rawal S., Hayes J.E., Wallace M.R., Bartoshuk L.M., Duffy V.B. Do Polymorphisms in the TAS1R1 Gene Contribute to Broader Differences in Human Taste Intensity? *Chem. Senses.*, 2013, vol.38, pp.719-728. , <u>http://dx.doi.org/10.1093/chemse/bjt040</u>

26. Riera C.E., Vogel H., Simon S.A., Damak S., Coutre J. The capsaicin receptor participates in artificial sweetener aversion. *Biochem Biophys Res Commun.*, 2008, vol.376, pp.653-657, <u>http://dx.doi.org/10.1016/j.bbrc.2008.09.029</u>

27. Sikhayeva N., Talzhanov Y., Iskakova A., Dzharmukhanov J., Nugmanova R., Zholdybaeva E., Ramanculov E. <u>Type 2 diabetes mellitus: distribution of genetic</u> <u>markers in Kazakh population.</u> *Clin Interv Aging.*, 2018, vol.13, pp. 377-388, <u>http://dx.doi.org/10.2147/CIA.S156044</u>

28. Sonestedt E., <u>Roos C., Gullberg B., Ericson U., Wirfält E., Orho-Melander M.</u> Fat and carbohydrate intake modify the association between genetic variation in the FTO genotype and obesity. *Am J Clin Nutr.*, 2009, vol.90, no. 5, pp.418-425, <u>http://dx.doi.org/ 10.3945/ajcn.2009.27958</u> 29. Tanaka T., <u>Ngwa J.S., van Rooij F.J., Zillikens M.C., Wojczynski</u> <u>M.K., Frazier-Wood A.C., Houston D.K., Kanoni S., Lemaitre R.N., Luan J., et al.</u> Genome-wide meta-analysis of observational studies shows common genetic variants associated with macronutrient intake. *Am J Clin Nutr.*, 2013, vol.97, pp. 1395-1302, <u>http://dx.doi.org/10.3945/ajcn.112.052183</u>

30. Tepper B.J., <u>Koelliker Y., Zhao L., Ullrich N.V., Lanzara C., d'Adamo P.,</u> <u>Ferrara A., Ulivi S., Esposito L., Gasparini P</u>. Variation in the bitter-taste receptor gene TAS2R38, and adiposity in a genetically isolated population in Southern Italy. *Obesity (Silver Spring)*, 2008, vol.16, pp. 2289-2295, <u>http://dx.doi.org/10.1038/oby.2008.357</u>

<u>31. The 1000 Genomes Project Consortium. A global reference for human genetic</u> variation. *Nature*, 2015, vol.526, pp. 68-74., http://dx.doi.org/10.1038/nature15393

32. Timpson N.J., Christensen M., Lawlor D.A., <u>Gaunt T.R., Day I.N., Ebrahim</u> <u>S., Davey Smith G</u>. TAS2R38 (phenylthiocarbamide) haplotypes, coronary heart disease traits, and eating behavior in the BritishWomen's Heart and Health Study. *Am J Clin Nutr.*, 2005, vol.81, pp. 1005-1011, <u>http://dx.doi.org/10.1093/ajcn/81.5.1005</u>

33. Wang J., Hinrichs A., Bertelsen S., Stock H., Budde J., Dick D., Bucholz K., Rice J., Saccone N., Edenberg H., Hesselbrock V., Kuperman S., Schuckit M., Bierut L., Goate A. Functional variants in *TAS2R38* and *TAS2R16* influence alcohol consumption in high-risk families of African-American origin. *Alcohol Clin Exp Res.*, 2007, vol.31, no.2, pp. 209-215, <u>http://dx.doi.org/10.1111/j.1530-0277.2006.00297.x</u>

34. Warodomwichit D., <u>Shen J., Arnett D.K., Tsai M.Y., Kabagambe</u> <u>E.K., Peacock J.M., Hixson J.E., Straka R.J., Province M.A., An P., Lai C.Q., Parnell</u> <u>L.D., Borecki I.B., Ordovas J.M.</u> ADIPOQ polymorphisms, monounsaturated fatty acids, and obesity risk: the GOLDN study. *Obesity*, 2009, vol.17, no. 3, pp.510-517, <u>http://dx.doi.org/10.1038/oby.2008.583</u>

ҚАЗАҚСТАНДАҒЫ ҚАЗАҚТАРДЫҢ ТАМАҚТАНУЫ МЕН ТАҒАМДЫҚ ТАЛҒАМЫНА БАЙЛАНЫСТЫ ГЕНДЕРДІҢ ГЕНЕТИКАЛЫҚ ӨЗГЕРІСТЕРІ

^{*}Сихаева Н.¹, Талжанов Е.¹, Джармуханов Ж.¹, Шевцов А.¹, Жолдыбаева Е.¹, Карабаева Р.², Бенберин В.², Филипенко М.³, Раманкулов Е.¹

¹ Ұлттық биотехнология орталығы,

13/5, Қорғалжын тас жолы, Нұр-Сұлтан, 010000, Қазақстан

²Қазақстан Республикасы Президенті Іс Басқармасының Медициналық орталығы,

10, Мәңгілік Ел, Нұр-Сұлтан, 010000, Қазақстан

³ Химиялық биология және іргелі медицина институты,

8, Лаврентьев академигі пр., Новосибирск қ., 630090, Ресей

*<u>ksnurgul@gmail.com</u>

ТҮЙІН

Бұл зерттеу қазақстандық когорттағы 24 бірнуклеотидті полиморфизм мен тағамдық артықшылық арасындағы байланысты бағалауға бағытталған. Амбулаториялық клиникадан барлығы 400 адам қабылданды және бұрын басқа этникалық топтардағы тамақтану тәртібі мен тамақтану әдеттерімен байланысты деп сипатталған 24 полиморфизмге генотиптелді. Жасы мен жынысы бойынша түзетілген регрессиялық талдау жасалды.

C-B2 (PLCB2) фосфолипазасындағы rs2290550 полиморфизмі, 1 дәм сезу рецепторының 1 геніндегі (TAS1R1) rs34160967 полиморфизмі және TAS2R16 геніндегі rs860170 полиморфизмі анықталған және сиыр еті стейктері, жаңа піскен нан және тәтті шайға немесе кофеге қатысты артықшылықтар арасындағы сәйкесінше бірлестіктер табылды. AA (TAS2R38) гаплотипі мен қуырылған картоптың артықшылығы арасындағы байланыс табылды. Осы зерттеудің негізгі нәтижелері тамақтанумен байланысты (BCMO1, PLCB2, TRPV1, TAS1R1 және TAS2R) гендер мен Қазақстан халқының тағамдық қалауы арасындағы қауымдастықтарды анықтау болып табылады.

Негізгі сөздер: ұнататын тағамы, генетикалық нұсқалар, қазақстандық когорта,полиморфизм.

ГЕНЕТИЧЕСКИЕ ИЗМЕНЕНИЯ ГЕНОВ, СВЯЗАННЫХ С ПИТАНИЕМ И ПИЩЕВЫМ ПРЕДПОЧТЕНИЕМ У КАЗАХОВ КАЗАХСТАНА

^{*}Сихаева Н¹., Талжанов Е.¹, Джармуханов Ж.¹, Шевцов А.¹, Жолдыбаева Е.¹, Карабаева Р.², Бенберин В.², Филипенко М.³, Раманкулов Е.¹

¹ Национальный центр биотехнологии КН МОН РК,

13/5 Коргалжинское шоссе, г. Нур-султан, 010000, Казахстан

² Медицинского центра Управления Делами Президента Республики Казахстан,

Мангилик Ел. 10, Нур-Султан, 010016, Казахстан

³ Институт химической биологии и фундаментальной медицины СО РАН,

пр. Академика Лаврентьева, 8, г. Новосибирск, 630090, Россия

*<u>ksnurgul@gmail.com</u>

АБСТРАКТ

Плотность вкусовых сосочков, различия в генах, кодирующие рецепторы, и другие факторы влияют на восприятие вкуса и дальнейшие пищевые предпочтения. Данное исследование было направлено на оценку связи между 24 однонуклеотидными полиморфизмами и пищевыми предпочтениями в казахстанской когорте. В общей сложности 400 человек были набраны из амбулаторной клиники и генотипированы на 24 полиморфизма, ранее описанные как связанные с пищевым поведением и пищевыми предпочтениями в других этнических группах. Был проведен регрессионный анализ с поправкой на возраст и пол.

В результате были обнаружены ассоциации между полиморфизмом rs2290550 в фосфолипазе C-B2 (PLCB2), полиморфизмом rs34160967 в гене рецептора 1 вкуса 1 (TAS1R1) и полиморфизмом rs860170 в гене TAS2R16 и предпочтениями в отношении говяжьего стейка, пресного хлеба и сладкого чая или кофе, соответственно. Обнаружена связь между гаплотипом AA (TAS2R38) и предпочтением жареного картофеля. Основными результатами этого исследования являются выявление ассоциаций между генами, связанными с питанием (BCMO1, PLCB2, TRPV1, TAS1R1 и TAS2R), и пищевыми предпочтениями у населения Казахстана.